1. Yasui L, Kroc T, Gladden S, Andorf C, Bux S, Hosmane N. Boron neutron capture in prostate cancer cells. Applied Radiation and Isotopes. 2012;70(1):6-12. Doi: 10.1016/j.apradiso.2011.07.001
2. Chen AY, Liu YW, Sheu RJ. Radiation shielding evaluation of the BNCT treatment room at THOR: A TORT-coupled MCNP Monte Carlo simulation study. Applied Radiation and Isotopes. 2008;66(3):28-38. Doi: 10.1016/j.apradiso.2007.07.016
3. Lotfi O, Sadrmomtazi A, Nikbin IM. A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. Construction and Building Materials. 2019;229 (1):116905. Doi: 10.1016/j.conbuildmat.2019.116905
4. Roslan MKA, Ismail M, Kueh ABH, Zin MRM. High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding. Construction and Building Materials. 2019;215(4):718-725. Doi: 10.1016/j.conbuildmat.2019.04.105
5. Tefelski DA, Piotrowski T, Polański A, Skubalski J, Blideanu V. Monte-Carlo aided design of neutron shielding concretes. Bulletin of the Polish Academy of Sciences. 2013;61(1):161-71. Doi: 10.2478/bpasts-2013-0015.
6. Abdullah MAH, Rashid RSM, Amran M, Hejazii F, Azreen NM, Fediuk R, Voo YL, Vatin NI, Idris MI. Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers. 2022;14(14):2830. Doi: 10.3390/polym14142830
7. Morioka A, Sato S, Kinno M, Sakasai A, Hori J, Ochiai K, Yamauchi M, Nishitani T, Kaminaga A, Masaki K, Sakurai S. Irradiation and penetration tests of boron-doped low activation concrete using 2.45 and 14 MeV neutron sources. Journal of nuclear materials. 2004;329(2):1619-23. Doi: 10.1016/j.jnucmat.2004.04.143.
8. Okuno K, Kawai M, Yamada H. Development of novel neutron shielding concrete. Nuclear Technology. 2009;168(2):545-52. Doi: 10.13182/NT09-A9241.
9. Thomas BS, Yang J, Bahurudeen A, Abdalla JA, Hawileh RA, Hamada HM, Nazar S, Jittin V, Ashish DK. Sugarcane bagasse ash as supplementary cementitious material in concrete–A review. Materials Today Sustainability. 2021;15(1):100086. Doi: 10.1016/j.mtsust.2021.100086
10. Dąbrowski M, Jóźwiak-Niedźwiedzka D, Bogusz K, Glinicki MA. Influence of serpentinite aggregate on the microstructure and durability of radiation shielding concrete. Construction and Building Materials. 2022;337(5):127536. Doi: 10.1016/j.conbuildmat.2022.127536
11. Piotrowski T, Tefelski D, Polański A, Skubalski J. Monte Carlo simulations for optimization of neutron shielding concrete. Open Engineering. 2012;2(2):296-303. Doi: 10.2478/s13531-011-0063-0
12. Gallego E, Lorente A, Vega-Carrillo HR. Testing of a high-density concrete as neutron shielding material. Nuclear technology. 2009;168(2):399-404. Doi: 10.13182/NT09-A9216
13. Harvey ZR. Neutron flux and energy characterization of a plutonium-beryllium isotopic neutron source by Monte Carlo simulation with verification by neutron activation analysis. UNLV Theses. 2010. Doi:10.34917/2242920
14. Piotrowski T, Tefelski D, Polański A, Skubalski J. Monte Carlo simulations for optimization of neutron shielding concrete. Open Engineering. 2012;2(2):296-303. Doi: 10.2478/s13531-011-0063-0
15. Akkurt I, Altindag R, Gunoglu KA, Sarıkaya H. Photon attenuation coefficients of concrete including marble aggregates. Annals of Nuclear Energy. 2012;43(2):56-60. Doi: 10.1016/j.anucene.2011.12.031
16. Akkurt I, Akyıldırım H. Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays. Nuclear Engineering and Design. 2012;252(1):163-6. Doi: 10.1016/j.nucengdes.2012.07.008