بررسی توسعه و کاربرد اگزوزوم های مشتق شده از سلول های بنیادی مزانشیمی در ترمیم بافت غضروفی

نوع مقاله : مروری

نویسندگان

1 گروه جراحی دهان، فک و صورت، مرکز تحقیقات بیماری های دهان و دندان، دانشکده دندانپزشکی، دانشگاه علوم پزشکی قم، قم، ایران

2 پژوهشکده ژن، سلول و بافت، مرکز تحقیقات و بانک فرآورده های پیوندی ایران، دانشگاه علوم پزشکی تهران، تهران، ایران

چکیده

زمینه و هدف: درمان نقایص غضروفی یکی از رایج­‌ترین چالش­‌های بالینی در نیروهای نظامی است که سبب کاهش بهره­‌وری و آمادگی نیروهای رزمی می­‌شود. این در حالی است که، تکنیک­‌های مدیریت فعلی به کنترل علائم و عملکرد مفصل کمک می­‌کنند. رویکرد درمانی بدون سلول برای بازسازی بافت غضروفی از طریق عمل پاراکرین به جهت تسریع و تسهیل فرآیندهای درمانی و اهمیت فوریت آن در بهبود افراد نظامی مورد توجه قرار گرفته است. اگزوزوم‌­ها، یکی از این واسطه­‌های پاراکرین، وزیکول­‌های خارج سلولی در مقیاس نانو هستند.
روش‌ها: یک جستجوی الکترونیک در پایگاه­‌های اطلاعاتی PubMed، Medscape، Google Scholar، MEDLINE و EMBASE از سال 2010 الی 2021 با کلمات کلیدی از قبیل سلول­‌های بنیادی⸲ اگزوزوم⸲ غضروف و پزشکی بازساختی انجام شد.
یافته‌ها: محتویات عملکردی مانند مولکول­‌های miRNA و mRNA، پپتیدها، پروتیین‌­ها، سیتوکین­‌ها و لیپیدها توسط اگزوزوم‌ها از سلول­‌های بنیادی مزانشیمی (Mesenchymal Stem Cells: MSCs) به سلول­‌های گیرنده منتقل می­‌شوند. کاربرد اگزوزوم‌­ها به عنوان یک روش عاری از سلول و بدون ایجاد پاسخ ایمنی می‌­تواند در درمان بیماری­‌های مفصلی امیدوارکننده باشد.
نتیجه‌گیری: مشخص شده است که اگزوزوم­‌ها در رویدادهای ارتباط بین سلولی نقش دارند و به دلیل شباهت به غشای پلاسمایی⸲ عدم فعال‌­سازی سیستم ایمنی و ترشح تعداد زیادی از سلول­‌ها می­‌توانند به عنوان یک عامل مهم در بهبود بافت‌­ها و اندام‌­های آسیب­‌دیده باشند. همچنین اگزوزوم‌­ها می‌­توانند به عنوان یک راهکار درمانی ایمن با قابلیت دسترسی بالا به جهت درمان بیماری­‌های غضروفی به­‌کار برده شوند.

کلیدواژه‌ها


1. Ghiasi M, Farzaneh S, Bigdelo M. Assessment of human cartilage regeneration in a patient with knee osteoarthritis using autologous adipose-tissue-derived stem cells and Platelet-rich plasma: a case study. Journal of Surgery and Trauma. 2020;8(2):73-8. doi:10.32592/jsurgery.2020.8.1.104 2. Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage. 2019;27(11):1578-89. doi:10.1016/ j.joca.2019.06.011 3. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis and Cartilage. 2020;28(3):242-8. doi:10.1016/j.joca.2020.01.002 4. Chen DI, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research. 2017;5(1):16044. doi:10.1038/boneres. 2016.44 5. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376-87. doi:10.1016/S0140-6736 (14)60802-3 6. Lin C, Liu L, Zeng C, Cui ZK, Chen Y, Lai P, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Research. 2019;7(1):5. doi:10.1038/s41413-018-00 41-8 7. Sharma AR, Jagga S, Lee SS, Nam JS. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. International Journal of Molecular Sciences. 2013;14(10):19805-30. doi:10.3390/ijms141019805 8. Knapik JJ, Reynolds KL, Harman E. Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Military Medicine. 2004; 169(1):45-56. doi:10.7205/MILMED.169.1.45 9. Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Research & Therapy. 2013;15 (1):R22. doi:10.1186/ar4156 10. Asare-Werehene M, Nakka K, Reunov A, Chiu CT, Lee WT, Abedini MR, et al. The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene. 2020;39(7):1600-16. doi:10.1038/s4138 8-019-1087-9 11. Zhao AG, Shah K, Cromer B, Sumer H. Mesenchymal stem cellderived extracellular vesicles and their therapeutic potential. Stem Cells International. 2020;2020:e8825771. doi:10.1155/20 20/8825771 12. Maas SL, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends in Cell Biology. 2017;27(3):172-88. doi:10.1016/j.tcb.2016.11.003 13. Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. Mesenchymal stemcell-derived exosomal microRNA -136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Research & Therapy. 2020;22(1):256. doi:10.1186/ s13075-020-02325-6 14. Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA -26a-5p alleviate osteoarthritis via down-regulation of PTGS2. International Immunopharmacology. 2020;78:105946. doi:10.1016/j.intimp.2019.105946 15. Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 2017;9 (13):4430-8. doi:10.1039/C7NR00352H 16. Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy. 2018;9(1):247. doi:10.1186/ s13287-018-1004-0 17. Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180-95. doi:10.7150/thno.1 7133 18. Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Research & Therapy. 2017;8 (1):189. doi:10.1186/s13287-017-0632-0 19. Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, et al. Exosomes derived from miR-155-5p–overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biology and Toxicology. 2021; 37(1):85-96. doi:10.1007/s10565-020-09559-9 20. Wong KL, Zhang S, Wang M, Ren X, Afizah H, Lai RC, et al. Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2020;36(8): 2215-28. doi:10.1016/j.arthro.2020.03.031 21. Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 2019;206:87-100. doi:10.1016/j.biomaterials.2019 .03.022 22. Yan L, Liu G, Wu X. Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19. Journal of Orthopaedic Translation. 2021;26:111-20. doi:10.1 016/j.jot.2020.03.005 23. Yan L, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fber bioreactor show improved osteochondral regeneration activity. Cell Biology and Toxicology. 2020;36(2):165-78. doi:10.1007/ s10565-019-09504-5 24. Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on mon oiodoacetate-induced animal model of osteoarthritis. BioFactors. 2020;46(1):106-17. doi:10.1002/biof.1 576 25. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016;24(12): 2135-40. doi:10.1016/j.joca.2016.06.022 26. Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018; 156:16-27. doi:10.1016/j.biomaterials.2017.11.028 27. Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019; 200:35-47. doi:10.1016/j.biomaterials.2019.02.006 28. Zhou X, Liang H, Hu X, An J, Ding S, Yu S, et al. BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation. Cell Death Discovery. 2020;6(1):142. doi:10.1038/s41420-020-00374-z 29. Zhu Y, Wang Y, Zhao B, Niu X, Hu B, Li Q, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy. 2017;8(1):64. doi:10.1 186/s13287-017-0510-9 30. Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439-59. doi:10.7150/thno.31017 31. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Science Reports. 2017;7(1):16214. doi:10.1038/s41598-017-15376-8 32. He L, He T, Xing J, Zhou Q, Fan L, Liu C, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Research & Therapy. 2020;11(1):276. doi:10.1186/s13287-020-01781-w 33. Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Research. 2020;381(1):99-114. doi:10.1 007/s00441-020-03193-x 34. Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, et al. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Applied Materials & Interfaces. 2020;12(33):36938-47. doi:10.1021/ acsami.0c10458 35. Liu C, Li Y, Yang Z, Zhou Z, Lou Z, Zhang Q. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair. Nanomedicine. 2020;15(3):273-88. doi.:10.2217/nnm-2019-0208 36. Wang R, Xu B, Xu H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle. 2018;17(24):2756-65. doi:10.1080/15384101.2018. 1556063 37. Wang Y, He SH, Liang X, Zhang XX, Li S-S, Li TF. ATF4- modifed serum exosomes derived from osteoarthritic mice inhibit osteoarthritis by inducing autophagy. International Union of Biochemistry and Molecular Biology. 2021;73(1):146-58. doi:10.1002 /iub.2414 38. Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei S, et al. Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine. 2019;14(24): 3193-212. doi:10.2217/nnm-2018-0498 39. Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/ NF-kB and miR-143/ROCK1/TLR9 signalling pathways. Journal Cellular and Molecular Medicine. 2020;24(18): 10855-65. doi:10.1111/jcmm.15714 40. Zhang J, Rong Y, Luo C, Cui W. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging. 2020;12(24):25138-52. doi:10. 18632/aging.104110 41. Liu X, Wang L, Ma C, Wang G, Zhang Y, Sun S. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway. Journal of Orthopedics Surgery and Research. 2019;14(1):470. doi:10.1186/ s13018-019-1529-7 42. Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, et al. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell & Bioscience. 2020; 10(1):69. doi:10.1186/s13578-020-00427-x 43. Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH, et al. The potential of mesenchymal stromal cell as therapy in neonatal diseases. Frontiers in Pediatrics. 2020;8:591693. doi:10.3389/ fped.2020.591693 44. Looi QH, Eng SP, Liau LL, Tor YS, Bajuri MY, Ng MH, et al. Mesenchymal stem cell therapy for sports injuries-From research to clinical practice. Sains Malaysiana. 2020;49(4):825-38. doi:10.1757 6/jsm-2020-4904-12 45. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease. 2016;7(1):e2062. doi:10.1038/cddis.2015.327 46. Lian J, Lv S, Liu C, Liu Y, Wang S, Guo X, et al. Effects of serial passage on the characteristics and cardiac and neural differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells. Stem Cells International. 2016;2016: 9291013. doi:10.1155/2016/9291013 47. Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell & Bioscience. 2020;10(1):112. doi:10.1186/s13578-020-00475-3 48. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual Review of Physiology. 2015; 77:13-27. doi:10.1146/annurev-physiol-021014-071 641 49. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience. 2016;320:129-39. doi:10.1016/j.neuroscience.2016. 01.061 50. Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, et al. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy. 2015;15(4):495-504. doi:10.1517/147125 98.2015.997706 51. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific Reports. 2013;3(1):1197. doi:10.1038/srep01197 52. Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. Nano Impact. 2020;20:100261. doi:10.1016/j.impact.2020.100261 53. Gholami L, Nooshabadi VT, Shahabi S, Jazayeri M, Tarzemany R, Afsartala Z, et al. Extracellular vesicles in bone and periodontal regeneration: current and potential therapeutic applications. Cell & Bioscience. 2021;11(1):16. doi:10.1186/s13578-02 0-00527-8 54. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654-9. doi:10.1038/ncb1596 55. Wu C, Tian BO, Qu X, Liu F, Tang T, Qin AN, et al. MicroRNAs play a role in chondrogenesis and osteoarthritis. International Journal of Molecular Medicine. 2014;34(1):13-23. doi:10.3892/ijmm. 2014.1743 56. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi:10.1126/science.aau 6977 57. Gomzikova MO, James V, Rizvanov AA. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immune modulation. Frontiers in Immunology. 2019;10: 2663. doi:10.3389/fmmu.2019.02663 58. Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020; 38(1):15-21. doi:10.1002/stem.3061 59. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nature reviews Immunology. 2014;14(3):195-208. doi:10.1038/nri3 622 60. Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circulation Research. 2009;104(3):398-402. doi:10.1161/CIRCRESAHA. 108.187724 61. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry. 2006;98(5):1076-84. doi:10.1002/ jcb.20886 62. Zhang C, Wang P, Jiang P, Lv Y, Dong C, Dai X, et al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene. 2016;586(2):248-53. doi:10.1016/j.gene.2016.04.016 63. Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for Alzheimer's disease therapy. Small. 2020;16(3):1906273. doi:10.1002/ smll.201906273 64. Cao J, Wang B, Tang T, Lv L, Ding Z, Li Z, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Research & Therapy. 2020;11(1):206. doi:10.1186/s13287-020-01719-2 65. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research. 2010;4(3):214-22. doi:10.1016/j.scr.2009. 12.003 66. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology. 2014;30(1):255-89. doi:10.1146/annurev-cellbio-101512-122326 67. Lo Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Current Opinion in Cell Biology. 2015;35:69-77. doi:10.1016/j.ceb.2015.04.013 68. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and antiinflammation. Cellular Physiology and Biochemistry. 2015;37(6):2415-24. doi:10.1159/0 00438594 69. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development. 2013;22(6):845-54. doi:10.1089/scd.2012.0395 70. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine. 2015;13(1):49. doi:10.1186/s12967-015-0417-0 71. Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, et al. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Research. 2020;8(1):25. doi:10.1038/s41413-020-0100-9 72. Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Seminars in Cell & Developmental Biology. 2017;67:56-64. doi:10.1016/j.semcdb. 2016.11.008 73. Kim YG, Park U, Park BJ, Kim K. Exosome-mediated bidirectional signaling between mesenchymal stem cells and chondrocytes for enhanced chondrogenesis. Biotechnology and Bioprocess Engineering. 2019;24(5):734-44. doi:10.1007/s12257-019-0332-y 74. Mihanfar A, Shakouri SK, Khadem-Ansari MH, Fattahi A, Latifi Z, Nejabati HR, et al. Exosomal miRNAs in osteoarthritis. Molecular Biology Reports. 2020;47(6):4737-48. doi:10.1007/s11033-020-05443-1 75. Peng B, Chen Y, Leong KW. MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews. 2015;88:108-22. doi:10.1016/j. addr.2015.05.014 76. Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Non-coding RNA. 2019;5(1):28. doi:10.3390/ncrna5010028 77. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Molecular Cancer. 2015;14(1):155. doi:10.1186/ s12943-015-0426-x 78. Cheng J, Abdi S. Complications of joint, tendon, and muscle injections. Techniques in Regional Anesthesia and Pain Management. 2007;11(3):141-7. doi:10.1053/j.trap.2007.05.006 79. Witwer KW, Théry C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of Extracellular Vesicles. 2019;8(1):1648167. doi:10.1 080/20013078.2019.1648167 80. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 2018;7(1):1535750. doi:10.1 080/20013078.2018.1535750 81. Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Molecular Therapy. 2018;26(12):2838-47. doi:10.1016/j.ymthe .2018.09.015 82. Pachler K, Lener T, Streif D, Dunai ZA, Desgeorges A, Feichtner M, et al. A Good Manufacturing Practice–grade standard protocol for exclusively human mesenchymal stromal cell–derived extracellular vesicles. Cytotherapy. 2017;19 (4):458-72. doi:10.1016/j.jcyt.2017.01.001 83. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo AB, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Journal of Translational Medicine. 2011;9(1):47. doi:10.1186/1479-5876-9-47 84. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, et al. Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells. 2007;25(2):425-36. doi:10.1634/stemcells.2006-04 20 85. Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, et al. Extracellular vesicles in musculoskeletal pathologies and regeneration. Frontiers in Bioengineering and Biotechnology. 2021;8:624096. doi:10.3389/fbioe.2020.624096