مدل‌سازی پیامد انتشار گاز کلر بر اساس مقادیر طرح‌ریزی واکنش در شرایط اضطراری طی یک دوره زمانی 24 ساعته توسط نرم‌افزار PHAST(مطالعه موردی حریم نیروگاه اتمی بوشهر)

نوع مقاله : پژوهشی اصیل

نویسنده

باشگاه پژوهشگران جوان و نخبگان، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران

چکیده

زمینه و هدف: یکی از خطراتی که تأمین امنیت مردم هر کشوری را می‌تواند به مخاطره بیندازد حملات جنگی توسط مواد شیمیایی می‌باشد. مطالعه‌ حاضر سناریو انتشار گاز کلر را بر جمعیت حومه‌ نیروگاه اتمی بوشهر طی یک دوره زمانی 24 ساعته به‌منظور به‌کارگیری نتایج آن در برنامه‌‌ی واکنش اضطراری بررسی نموده است.
روش‎ها: به‌منظور دسترسی به داده‌های واقعی، حریم نیروگاه اتمی بوشهر به‌صورت حضوری بررسی ‌شده و سپس به‌منظور ارزیابی بدترین شرایط ممکن، از میان طیف وسیعی از ترکیبات شیمیایی معرف به گازهای جنگی، کلر به علت سمیت فوق‌العاده بالا و از میان سناریوهای موجود، ترکیدگی فاجعه‌بار (رهایش آنی) انتخاب شد. درنهایت فواصل خطر این سناریو به‌منظور ارزیابی پیامد اثرات گاز کلر بر جمعیت منطقه هدف به کمک سطوح ERPGs ،IDLH وSTEL  تعیین گردید. برای این منظور از نرم‌افزار PHAST‌ نسخه 6.7 استفاده شده است.
یافته‌ها: نتایج مطالعه حاضر بر مبنای معیارهای ارزیابی اثرات مواجهه با مواد سمی نشان داد نمی‌توان در فواصل نزدیک به کانون انفجار براساس معیارهای IDLH و STEL یک منطقه طرح‌ریزی شرایط اضطراری تعریف نمود؛ اما بر اساس غلظت‌های ERPG؛ گاز کلر در بازه زمانی 06:00 تا 10:00 صبح مسافت کمتری را تا رسیدن به مقادیر 3-2ERPG به ترتیب در فواصل 2811 و 1040 متری به نسبت دیگر دوره‌های زمانی بررسی‌شده طی کرده است. برعکس در شب این فواصل بیشترین حریم خطر را بر اساس مقادیر غلظت‌های مذکور به ترتیب در فواصل 5212 و 1459 متری به خود اختصاص داده است.
نتیجه‌گیری: به‌منظور کاهش آسیب‌پذیری در حوادث، مدل‌سازی شرایط آب و هوایی بر اساس دوره‌های زمانی (صبح، ظهر، عصر و شب) می‌تواند راهنمای مهمی برای طرح‌ریزی محدوده‌های شرایط اضطراری باشد. بر این اساس پیشنهاد گردید بالاترین فاصله خطر به‌دست‌آمده بر مبنای معیار 1ERPG که تعیین فاصله خطر بر اساس کمترین غلظت ماده شیمیایی در هوای محیط می‎باشد که حتی بوی ناخوشایندی برای ساکنین در معرض مواجهه ایجاد نمی‌کند در طرح‌ریزی حریم‌های ایمن خصوصاً در شعاع مطالعاتی مشابه مدنظر قرار گیرد.

کلیدواژه‌ها


1. Center for Chemical Process Safety (CCPS), Guidelines for chemical process quantitative risk analysis: American of Chemical Engineers; New York, 2000. 2. Fakhraeian H. Chemical Factors. 1st ed. Tehran: Imam Hossein; 2003. 3. Nabi J, Gholamrezania M. Assessment of the implications of chemical bomb explosions using PHAST software. Seventh national defense conference on new war. Tehran: Imam Hossein Comprehensive University; 2017. 4. Naserzadeh Z, Mehrabani M, Kohhpaee H. Modeling Software training for the Consequences of ALOHA Events. 1st ed. Tehran: Sepid Ber; 1394. 5. Sharma RK, Gurjar BR, Wate SR, Ghuge SP, Agrawal R. Assessment of an accidental vapour cloud explosion: Lessons from the Indian Oil Corporation Ltd. accident at Jaipur, India. Journal of Loss Prevention in the Process Industries. 2013;26:82-90. doi:10.1016/j.jlp.2012.09.009 6. Jahangiri M, Noroozi A, Sareban Zadeh K. risk assessment and Management. 1st ed. Tehran: Fanavaran; 2013. 7. Ghashghaei R, Sabzghabaei GR, Dashti S, Jafari Azar S, Salehipour F. Modeling and prediction of environmental consequences of methanol as the most dangerous goods in ports (Case Study: Bandar Imam Khomeini). Health and Safety at Work. 2019;9(2): 157-67. 8. Witlox HW, Fernández M, Harper M, Oke A, Stene J, Xu Y. Verification and validation of Phast consequence models for accidental releases of toxic or flammable chemicals to the atmosphere. Journal of loss prevention in the process industries. 2018;55: 457-70. doi:10.1016/j.jlp.2018.07.014 9. Wang K, Liu Z, Qian X, Huang P. Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. J Loss Prev Process Ind. 2017;46:6. doi:10.1016/j.jlp.2017.01.001 10. Witlox HW, Harper M, Oke A, Stene J. Phast validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases. Journal of Loss Prevention in the Process Industries. 2014;30: 243-55. 11. Neghab M, Amiri F, Moayedi R, Hosseini SY. Investigation of lung functional capacities and respiratory disorders caused by chlorine gas. Journal of Safety Promotion and Injury Prevention. 2014;2 (2):140. 12. Kariznovi H, Farshad AA, Yarahmadi R, Khosravi Y, Yari P. Consequence Analysis of fire and explosion of a cylindrical LPG tank in a selected industry of oil and gas. IOH. 2017;14(3):37. 13. Zellner T, Eyer F. Choking agents and chlorine gas - History, pathophysiology, clinical effects and treatment. Toxicol Lett. 2019;320:3. doi:10.1016/j.toxlet.2019.12.005 14. Galal-Gorchev H. Chlorine in water disinfection. Pure Appl Chem. 1996; 68(9):14. doi:10.1351/pac199668091731 15. Pandya N, Gabas N, Marsden Eric. Sensitivity analysis of PHAST's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine). J Loss Prev Process Ind. 2013;25(1):24. 16. WebWISER & WISER Application, Version 4.6 software. Available from: https://webwiser.nlm.nih.gov/initSearch?tab=Symptoms. doi:10.1016/j.jlp.2011.06.015 17. Mortazavi SB, Parsarad M, Mahabadi HA, Khavanin A. Evaluation of chlorine dispersion from storage unit in a petrochemical complex to providing an emergency response program. Iran Occupational Health. 2011;8(3). 18. Jahangiri M, Parsarad A. Determination of hazard distance of chemical release in a petrochemical industry by chemical exposure index (CEI). Iran Occupational Health. 2010;7(3):55-62. 19. Kashi E, Nasehpoor S, Kareshki H, Farmad M. Analysis of accidents in refineries process. The Third National Conference on Safety Engineering and HSE Management. HSE. 2009. 20. Hanna S, Dharmavaram S, Zhang J, Sykes I, Witlox H, Khajehnajafi S, Koslan K. Comparison of six widely‐used dense gas dispersion models for three recent chlorine railcar accidents. Process Safety Progress. 2008;27(3):248-59. doi:10.1002/prs.10257 21. Atabi F, Ghorbani R, Jabbari M. Assessment of safe distance for five toxic materials commonly in the accidents of chemical road transportation using ALOHA and PHAST software and CEI index (Case Study: Tehran-Qazvin Highway). Iran Occupational Health. 2017;14(4):42-35. 22. Gohar Rakhi M, Torabi M, Akbari F, Gulzazari F. Qualitative and Quantitative Risk Assessment in Process Units. 1st ed. Research Center of Petroleum Industry; 2009. 23. CAMEO Chemicals, Version 2.7 Software. Available from: https://cameo chemicals.noaa.gov. 24. Iran Meteorological Organization. Available from:http://reports.irimo.ir/jasperserver/flow.html?_flowId=searchFlow. 25. Jahangiri M, Rostam A, Sareban Abadi A, Norozi MA, Azmoon H, Jalilian H, et al. Risk assessment and Management. 1st ed. Tehran: Fanavaran; 2013. 26. Beheshti MH, Mosavianasl Z, Tajpoor A, Hajizadeh R. Evaluation the Extent of Explosion, Ignition and Gas Leakage Consequences in Cylinders Containing 26.2-Liters of Liquid Gas, with Passive Defense Approach. J Mil Med. 2018;19(6):551-561. 27. Karimi A. Safety in the oil and gas industry. 4th ed. Tehran: Aylar; 2013. 28. Gupta R C .Veterinary Toxicology: Basic and Clinical Principles. 2nd ed. Elsevier: Academic Press; 2012. 29. Setareshenas N, Khalilipour MM, Shahraki F, Mansouri M. Consequence Modeling of Chlorine Release from Water Treatment Plant. American Chemical Science Journal. 2014;4(1):102. doi:10.9734/ACSJ/2014/5961