تأثیر شاک‌ویو‌درمانی بر شاخص‌های بالینی و عملکردی افراد مبتلابه سندرم تنش داخلی تیبیا: مرور سیستماتیک

نوع مقاله : پژوهشی اصیل

نویسنده

دانشکده علوم ورزشی، دانشگاه صنعتی شاهرود، شاهرود، سمنان

چکیده

زمینه و هدف: سندرم تنش داخلی تیبیا (MTSS) به‌عنوان یکی از متداول‌ترین آسیب‌های پرکاری مرتبط با ورزش در بین دوندگان و پرسنل نظامی است. اکستراکورپوریال شاک ویودرمانی (ESWT) یکی از مودالیته­های درمانی نوظهور جهت درمان افراد مبتلابه MTSS است که اطلاعات محدودی در مورد اثربخشی آن وجود دارد. علاوه بر این، هیچ مطالعه مروری نظام‌مندی یافت نشد که به‌طور ویژه اثربخشی بالینی و عملکردی ESWT  را برای افراد مبتلابه MTSS مورد مطالعه قرار داده باشد؛ بنابراین هدف از مطالعه مروری حاضر بررسی تأثیر ESWT بر شاخص‌های بالینی و عملکردی افراد مبتلابه MTSS است.
روش‌ها: به‌منظور انجام این مطالعه، پایگاه‌های داده Embase، Scopus، Medline، Web of Science، PubMed  و Biomed Centralبا استفاده از کلیدواژه‌های انتخابی از ابتدا تا یک ژوئن 2021 مورد جستجو قرار گرفت. جهت انجام این مطالعه دستورالعمل‌های PRISMA رعایت شد. حاصل جست‌وجوهای صورت گرفته بر اساس استراتژی‌های جستجو 978 مقاله بود. متعاقب حذف مقالات تکراری و غیر مرتبط، متن کامل 11 مقاله از پایگاه‌های موردنظر دریافت شد. بعد از بررسی متن کامل این مقالات، اطلاعات مربوط به چهار مقاله که تأثیر ESWT را برای افراد مبتلابه MTSS مورد بررسی قرار داده بودند، استخراج شد.
یافته‌ها: تعداد شرکت‌کننده‌های مطالعات بررسی‌شده 202 نفر با میانگین سنی 8/9 ± 33/2 سال و سابقه آسیب بالای 3 هفته بود. شرکت‌کنندگان سه مطالعه را ورزشکاران و شرکت‌کنندگان یک مطالعه را پرسنل نظامی تشکیل می‌داد. سه مطالعه معتقد بودند که ESWT تأثیر معنی‌داری در درمان MTSS  دارد، درحالی‌که یکی از این مطالعات معتقد بود ESWT تأثیر معنی‌داری در درمان MTSS ندارد.
نتیجه‌گیری: با توجه به اینکه بیشتر مطالعات گذشته گزارش کرده‌اند که ESWT اثربخشی مثبتی برای افراد مبتلابه MTSS دارد می‌توان این مودالیته درمانی را برای افراد مبتلابه MTSS توصیه کرد. بااین‌حال، به خاطر محدود بودن تعداد مطالعات گذشته و نتایج متناقض و ضعف روش‌شناختی برخی از مطالعات، نیاز به انجام مطالعات دقیق‌تری است تا به‌عنوان یک مودالیته قابل‌قبول جهت درمان MTSS در نظر گرفته شود.

کلیدواژه‌ها


1. Strandbu Å, Bakken A, Stefansen K. The continued importance of family sport culture for sport participation during the teenage years. Sport, Education and Society. 2020;25(8):931-45.doi.org/10.1080/13573322.2019.1676221 2. Naderi A, Degens H, Rezvani MH, Shaabani F. A retrospective comparison of physical health in regular recreational table tennis participants and sedentary elderly men. Journal of musculoskeletal & neuronal interactions. 2018;18(2):200.doi.org/PMC6016501 3. Naderi A, Zagatto AM, Akbari F, Sakinepoor A. Body composition and lipid profile of regular recreational table tennis participants: a cross-sectional study of older adult men. Sport Sciences for Health. 2018;14(2):265-74.doi.org/10.1007/s11332-017-0422-1 4. Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. British journal of sports medicine. 2011;45(11):871-6.doi.org/10.1136/bjsports-2011-090333 5. Gholami F, Bemani D, Naderi A, Rezaei N. Effect of 12-week resistance training on clinical symptoms and quality of life in type-2 diabetic men with peripheral neuropathy. Jundishapur Scientific Medical Journal. 2020;19(3):267-75.doi.org/10.22118/jsmj.2020.208712.1899 6. Dahab K, Potter MN, Provance A, Albright J, Howell DR. Sport specialization, club sport participation, quality of life, and injury history among high school athletes. Journal of athletic training. 2019;54(10):1061-6.doi.org/10.4085/1062-6050-361-18 7. Naderi E. Does obesity affect the efficacy of therapeutic exercise on pain intensity and disability in patients with chronic non-specific low back pain? 2017 8. Naderi A, Shaabani F, Esmaeili A, Salman Z, Borella E, Degens H. Effects of low and moderate acute resistance exercise on executive function in community-living older adults. Sport, Exercise, and Performance Psychology. 2019;8(1):106.doi.org/10.1037/spy0000135 9. Shaabani F, Esmaeili A, Salman Z, Naderi A. Effect of Difference Intensity (low and moderate) Acute Resistance Exercise on Inhabitation Control in the Older Adults. Journal of Applied Psychological Research. 2018;9(2):142-61.doi.org/ 10.22059/japr.2018.68729 10. Pate RR, Trost SG, Levin S, Dowda M. Sports participation and health-related behaviors among US youth. Archives of pediatrics & adolescent medicine. 2000;154(9):904-11.doi.org/DOI: 10.1001/archpedi.154.9.904 11. Pietiläinen KH, Kaprio J, Borg P, Plasqui G, Yki‐Järvinen H, Kujala UM, et al. Physical inactivity and obesity: a vicious circle. Obesity. 2008;16(2):409-14.doi.org/ DOI: 10.1038/oby.2007.72 12. Naderi A, Baloochi R, Rostami KD, Fourchet F, Degens H. Obesity and foot muscle strength are associated with high dynamic plantar pressure during running. The Foot. 2020;44:101683.doi.org/10.1016/j.foot.2020.101683 13. Naderi A, Moen MH, Degens H. Is high soleus muscle activity during the stance phase of the running cycle a potential risk factor for the development of medial tibial stress syndrome? A prospective study. Journal of sports sciences. 2020;38(20):2350-8.doi.org/ 10.1080/02640414.2020.1785186 14. Shaabani F, Naderi A, Borella E, Calmeiro L. Does a brief mindfulness intervention counteract the detrimental effects of ego depletion in basketball free throw under pressure? Sport, Exercise, and Performance Psychology. 2020;9(2):197.doi.org/10.1037/spy0000201 15. Naderi A, Shaabani F, Zandi HG, Calmeiro L, Brewer BW. The effects of a mindfulness-based program on the incidence of injuries in young male soccer players. Journal of sport and exercise psychology. 2020;42(2):161-71.doi.org/10.1123/jsep.2019-0003 16. Bagheri S, Naderi A, Mirali S, Calmeiro L, Brewer BW. Adding mindfulness practice to exercise therapy for female recreational runners with patellofemoral pain: A randomized controlled trial. Journal of Athletic Training. 2021;56(8):902-11.doi.org/10.4085/1062-6050-0214.20 17. Becker JA, Richardson BM, Brown ST. A step-wise approach to exertional leg pain: this review, differential table, and case to test your skills can help you avoid overuse of costly tests and delayed treatment. Journal of Family Practice. 2016;65(10):672-9 18. Yates B, White S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. The American journal of sports medicine. 2004;32(3):772-80.doi.org/10.1177/0095399703258776 19. Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC. Medial tibial stress syndrome: a critical review Sports medicine. 2009;39(7):523-46.doi.org/10.2165/00007256-200939070-00002 20. Moen MH. Aetiology, imaging and treatment of medial tibial stress syndrome: Utrecht University; 2012. 21. Moen MH, Bongers T, Bakker E, Weir A, Zimmermann W, Van der Werve M, et al. The additional value of a pneumatic leg brace in the treatment of recruits with medial tibial stress syndrome; a randomized study. BMJ Military Health. 2010;156(4):236-40.doi.org/ 10.1136/jramc-156-04-06 22. Galbraith RM, Lavallee ME. Medial tibial stress syndrome: conservative treatment options. Current reviews in musculoskeletal medicine. 2009;2(3):127-33.doi.org/10.1007/s12178-009-9055-6 23. Balochi R, Naderi E, Ghiasi A. Srvey of lower extremity alignment in the athletes affected by shin splint. Journal of Applied Exercise Physiology (JAEP). 2010;6(12):31-40 24. Naderi A, Bagheri S, Rezvani MH. Evaluation of risk factors related to shin splint in athletes. Journal of Applied Exercise Physiology (JAEP). 2016;12(24):67-82.doi.org/10.22080/jaep.2017.1469 25. Bouché RT, Johnson CH. Medial tibial stress syndrome (Tibial fasciitis) A proposed pathomechanical model involving fascial traction. Journal of the American Podiatric Medical Association. 2007;97(1):31-6 26. Johnell O, Rausing A, Wendeberg B, Westlin N. Morphological bone changes in shin splints. Clinical Orthopaedics and Related Research®. 1982;167:180-4 27. Winters M, Burr DB, van der Hoeven H, Condon KW, Bellemans J, Moen MH. Microcrack-associated bone remodeling is rarely observed in biopsies from athletes with medial tibial stress syndrome. Journal of bone and mineral metabolism. 2019;37(3):496-502.doi.org/10.1007/s00774-018-0945-9 28. Couture CJ, Karlson KA. Tibial stress injuries: decisive diagnosis and treatment of ‘shin splints’. The Physician and sportsmedicine. 2002;30(6):29-36.doi.org/10.3810/psm.2002.06.337 29. Andrish J, Bergfeld J, Walheim J. A prospective study on the management of shin splints. JBJS. 1974;56(8):1697-700 30. Morris R. Medial tibial syndrome: a treatment protocol using electric current. Chiropractic Sports Med. 1991;5(1):5-8 31. Nissen L, Astvad K, Madsen L. Low-energy laser therapy in medial tibial stress syndrome. Ugeskrift for laeger. 1994;156(49):7329-31 32. Callison M. Acupuncture & tibial stress syndrome (shin splints). The Journal of Chinese Medicine. 2002(70):24-8 33. Schulman R. Tibial shin splints treated with a single acupuncture session: case report and review of the literature. J Am Med Acupuncture. 2002;13(1):7-9.doi.org/10.1186/1758-2555-4-12 34. Naderi A, Bagheri S, Moen M, Degens H. Foot Orthoses Enhance the Effectiveness of Exercise, Shockwave, and Ice Therapy in the Management of Medial Tibial Stress Syndrome. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine. 2021;Online ahead of print.doi.org/10.1097/JSM.0000000000000926 35. Naderi A, Degens H, Sakinepoor A. Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. European journal of sport science. 2019;19(2):247-57.doi.org/10.1080/17461391.2018.1503337 36. Ramezanian F, Bagheri S, Naderi A. Effect of Arch Support Foot Orthosis on Pain Severity in Recreational Runners with Shin Splint during Running Scientific Journal of Rehabilitation Medicine (SJRM). 2020;9(4):235-45.doi.org/10.22037/jrm.2020.113394.2359 37. Padhiar N, Curtin M, Aweid O, Awied B, Morrissey D, Chan O, et al. The effectiveness of prolotherapy for recalcitrant medial tibial stress syndrome: a prospective case series. J Foot Ankle Res. 2020;14(1):32-9.doi.org/10.1186/s13047-021-00453-z. 38. Moen MH, Holtslag L, Bakker E, Barten C, Weir A, Tol JL, et al. The treatment of medial tibial stress syndrome in athletes; a randomized clinical trial. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology. 2012;4(1):1-8.doi.org/10.1186/1758-2555-4-12 39. Medina I, Jurado A, Magee Dj VJ. Local multipunctual corticosteroid injections for medial tibial stress syndrome: a novel approach. 2013 40. Holen K, Engebretsen L, Grøntvedt T, Rossvoll I, Hammer S, Stoltz V. Surgical treatment of medial tibial stress syndrome (shin splint) by fasciotomy of the superficial posterior compartment of the leg. Scandinavian journal of medicine & science in sports. 1995;5(1):40-3 41. Zhang S, Li H, Yao W, Hua Y, Li Y. Therapeutic response of extracorporeal shock wave therapy for insertional Achilles tendinopathy between sports-active and nonsports-active patients with 5-year follow-up. Orthopaedic journal of sports medicine. 2020;8(1):2325967119898118.doi.org/10.1177/2325967119898118 42. Ioppolo F, Tattoli M, Di Sante L, Attanasi C, Venditto T, Servidio M, et al. Extracorporeal shock-wave therapy for supraspinatus calcifying tendinitis: a randomized clinical trial comparing two different energy levels. Physical therapy. 2012;92(11):1376-85.doi.org/10.2522/ptj.20110252 43. Martini L, Giavaresi G, Fini M, Torricelli P, De Pretto M, Schaden W, et al. Effect of extracorporeal shock wave therapy on osteoblastlike cells. Clinical Orthopaedics and Related Research®. 2003;413:269-80.doi.org/10.1097/01.blo.0000073344.50837.cd 44. Rompe JD, Rosendahl T, Schöllner C, Theis C. High-energy extracorporeal shock wave treatment of non:union:s. Clinical Orthopaedics and Related Research®. 2001;387:102-11.doi.org/10.1097/00003086-200106000-00014 45. Garcia SG, Rona SR, Tinoco MCG, Rodriguez MB, Ruiz DMC, Letrado FPC, et al. Shockwave treatment for medial tibial stress syndrome in military cadets: A single-blind randomized controlled trial. International Journal of Surgery. 2017;46:102-9.doi.org/10.1016/j.ijsu.2017.08.584 46. Moen M, Rayer S, Schipper M, Schmikli S, Weir A, Tol J, et al. Shockwave treatment for medial tibial stress syndrome in athletes; a prospective controlled study. British journal of sports medicine. 2012;46(4):253-7.doi.org/10.1136/bjsm.2010.081992 47. Newman P, Waddington G, Adams R. Shockwave treatment for medial tibial stress syndrome: a randomized double blind sham-controlled pilot trial. Journal of science and medicine in sport. 2017;20(3):220-4.doi.org/10.1016/j.jsams.2016.07.006. Epub 2016 Aug 5. 48. Rompe JD, Cacchio A, Furia JP, Maffulli N. Low-energy extracorporeal shock wave therapy as a treatment for medial tibial stress syndrome. The American journal of sports medicine. 2010;38(1):125-32.doi.org/10.1177/0363546509343804 49. Winters M, Moen MH, Zimmermann WO, Lindeboom R, Weir A, Backx FJ, et al. The medial tibial stress syndrome score: a new patient-reported outcome measure. British Journal of Sports Medicine. 2016;50(19):1192-9 50. Elkins MR, Moseley AM, Sherrington C, Herbert RD, Maher CG. Growth in the Physiotherapy Evidence Database (PEDro) and use of the PEDro scale. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2013. p. 188-9. 51. Wang C-J, Wang F-S, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Archives of orthopaedic and trauma surgery. 2008;128(8):879.doi.org/10.1007/s00402-008-0663-1 52. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF‐β1 and VEGF in the early stage of shock wave‐promoted bone regeneration of segmental defect in rats. Journal of orthopaedic research. 2004;22(3):526-34.doi.org/10.1016/j.orthres.2003.10.005. 53. Wang F-S, Yang K, Kuo Y-R, Wang C-J, Sheen-Chen S-M, Huang H-C, et al. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone. 2003;32(4):387-96.doi.org/10.1016/s8756-3282(03)00029-2 54. Wang F, Yang K, Chen R, Wang C, Sheen-Chen S. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-β1. The Journal of bone and joint surgery British volume. 2002;84(3):457-61.doi.org/10.1302/0301-620x.84b3.11609 55. Kearney CJ, Lee JY, Padera RF, Hsu HP, Spector M. Extracorporeal shock wave‐induced proliferation of periosteal cells. Journal of Orthopaedic Research. 2011;29(10):1536-43.doi.org/ 10.1002/jor.21346 56. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. The FASEB journal. 2006;20(7):811-27.doi.org/10.1096/fj.05-5424rev 57. Schaden W, Mittermayr R, Haffner N, Smolen D, Gerdesmeyer L, Wang C-J. Extracorporeal shockwave therapy (ESWT)–First choice treatment of fracture non-:union:s? International Journal of Surgery. 2015;24:179-83.doi.org/10.1016/j.ijsu.2015.10.003