کاربرد سلول‌درمانی با هدف درمان آسیب‌های شیمیایی و ترومایی قرنیه

نوع مقاله : مروری

نویسندگان

1 ، مرکز تحقیقات آسیب های شیمیایی، دانشگاه علوم پزشک بقیه الله (عج)، تهران، ایران

2 مرکز تحقیقات آسیب های شیمیایی، دانشگاه علوم پزشکی بقیه الله (عج)، تهران، ایران

چکیده

آسیب‌های چشمی یکی از رایج‌ترین عوارض عوامل شیمیایی به­‌ویژه گاز خردل است که در بلندمدت نیز درگیری­‌های زیادی را نشان می­‌دهد. قرنیه مهم‌ترین عضو تشکیل‌دهنده چشم است که بسیاری از این آسیب‌ها به‌دلیل اختلالات در این بافت ایجاد می‌شود. در حال حاضر، پیوند قرنیه متداول‌ترین راه درمانی آسیب‌های قرنیه به شمار می‌رود که به­‌دلیل کمبود اهداکننده، ردشدن پیوند و همچنین امکان انتقال بیماری از اهداکننده به گیرنده با محدودیت‌هایی روبرو است که نیاز به یک روش‌ درمانی مفید با بازدهی بالا را نیز ایجاب می‌کند. سلول‌های بنیادی با قابلیت تکثیر و تمایز به بافت‌های هدف، نقش بسیار مهمی در روش‌های بازسازی نوین ایفا می‌کند. این سلول‌ها از منابع مختلف غیر چشمی مانند مغز استخوان، چربی و بند ناف و منابع چشمی در لایه‌های قرنیه نیز قابل حصول هستند. انتقال مستقیم و غیرمستقیم سلول‌های بنیادی با منابع مختلف چشمی و غیرچشمی به لایه‌های آسیب‌دیده قرنیه و پس از آن تمایز به سلول‌های اختصاصی قرنیه و بازسازی آن به‌عنوان یک روش درمانی کاربردی در دهه‌های اخیر موردتوجه قرار گرفته است. با توجه به سرعت پیشرفت بالا در این زمینه در بسیاری از کشورها و جایگزینی آن نسبت به روش‌های پرخطر و زمان‌بر جراحی، نیاز است تا بیش از پیش به آن پرداخته شود. در این مطالعه، علاوه‌­بر معرفی چالش‌های موجود در روش‌های پزشکی کنونی و همچنین ساختار بافت قرنیه، پیشرفت‌های پیش بالینی و بالینی استفاده از سلول‌های بنیادی برای سلول‌درمانی نیز مرور شده است.

کلیدواژه‌ها


1. Rajavi Z, Safi S, Javadi MA, Jafarinasab MR, Feizi S, Moghadam MS, et al. Clinical practice guidelines for prevention, diagnosis and management of early and delayed-onset ocular injuries due to mustard gas exposure. Journal of Ophthalmic and Vision Research. 2017;12(1):65–80. DOI: 10.4103/2008-322X.205383 2. Jadidi K, Mohazzab-Torabi S, Pirhadi S, Naderi M, Yekta A, Sardari S, et al. A Study of Corneal Biomechanics in Delayed-Onset Mustard Gas Keratopathy Compared to Cases with Corneal Scarring and Normal Corneas. Eye Contact Lens. 2019;45(2):112–6. DOI: 10.1097/ICL.0000000000000536 3. Alió del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, et al. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. American Journal of Ophthalmology. 2018;186:47–58. DOI: 10.1016/j.ajo.2017.10.026 4. Huang YX. Corneal tissue engineering. Biointegration Med Implant Mater Sci Des. 2010;86–115. 5. Bains KK, Fukuoka H, Hammond GM, Sotozono C, Quantock AJ. Recovering vision in corneal epithelial stem cell deficient eyes. Contact Lens Anterior Eye [Internet]. 2019;42(4):350–358. Available from: https://doi.org/10.1016/j.clae.2019.04.006 6. Srinivas SP. Dynamic regulation of barrier integrity of the corneal endothelium. Optometry and Vision Science. 2010;87(4): 239-254. DOI: 10.1097/OPX.0b013e3181d39464 7. Damala M, Singh V. Corneal Regeneration [Internet]. 2019. 13–22 p. Available from: http://link.springer.com/10.1007/978-3-030-01304-2 8. Santos A Dos, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SX. Differentiation Capacity of Human Mesenchymal Stem Cells into Keratocyte Lineage. Investigative Ophthalmology & Visual Science. 2019 1;60(8):3013-3023. DOI: 10.1167/iovs.19-27008. 9. Shukla S, Shanbhag SS, Tavakkoli F, Varma S, Singh V, Basu S. Limbal Epithelial and Mesenchymal Stem Cell Therapy for Corneal Regeneration. Current Eye Research. 2020;45(3):265–277. Available from: https://doi.org/10.1080/02713683.2019.1639765 10. Fuest M, Yam GHF, Peh GSL, Mehta JS. Advances in corneal cell therapy. Regenerative Medicine. 2016;11(6):601–615. DOI: 10.2217/rme-2016-0054 11. He H, Yiu SC. Stem cell-based therapy for treating limbal stem cells deficiency: A review of different strategies. Saudi Journal of Ophthalmology. 2014;28(3):188–194. Available from: http://dx.doi.org/10.1016/j.sjopt.2014.06.003 12. Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, et al. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. The Ocular Surface. 2019;17(4):729–736. Available from: https://doi.org/10.1016/j.jtos.2019.07.005 13. Pavillion AE. Allogeneic Ex Vivo Expanded Corneal Epithelial Stem Cell Transplantation : A Randomized Controlled Clinical Trial. Stem Cells Translational Medicine 2019;1:323–331. DOI: 10.1002/sctm.18-0140 14. Tsai RJF, Li L, Chen J, Ladas JG, Stark W. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. Evidence-Based Eye Care. 2001;2:18–19. DOI: 10.1056/NEJM200007133430202 15. Sharifi AM, Darabi R, Jadidi K. Isolation, culture, characterization and optimization of human corneal stem cells. Biocell. 2010;34(1):53–55. 16. Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational Research. 2019;206:18–40. Available from: https://doi.org/10.1016/j.trsl.2018.11.003 17. Call M, Elzarka M, Kunesh M, Hura N, Birk DE, Kao WW. Therapeutic efficacy of mesenchymal stem cells for the treatment of congenital and acquired corneal opacity. Molecular Vision 2019;1:415–426. 18. El Zarif M, Jawad KA, Alió Del Barrio JL, Jawad ZA, Palazón-Bru A, de Miguel MP, et al. Corneal stroma cell density evolution in keratoconus corneas following the implantation of adipose mesenchymal stem cells and corneal laminas: An in vivo confocal microscopy study. Investigative Ophthalmology Visual Science. 2020;61(4). doi:https://doi.org/10.1167/iovs.61.4.22 19. Donthineni PR, Bagga B, Singh V, Shukla S. Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea 2017;36(12):36–37. DOI: 10.1097/ICO.0000000000001228 20. Nurković JS, Vojinović R, Dolićanin Z. Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells International. 2020;1:1–11. https://doi.org/10.1155/2020/8813447 21. West-mays JA, Dwivedi DJ. The keratocyte : Corneal stromal cell with variable repair phenotypes. The International Journal of Biochemistry & Cell Biology 2006;38:1625–31. DOI: 10.1016/j.biocel.2006.03.010 22. Naylor RW, McGhee CNJ, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS One 2016;11(10):1–17. Available from: http://dx.doi.org/10.1371/journal.pone.0165464 23. Alió JL, Alió Del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, et al. Regenerative Surgery of the Corneal Stroma for Advanced Keratoconus: 1-Year Outcomes. American Journal of Ophthalmology. 2019;203:53–68. DOI: 10.1016/j.ajo.2019.02.009 24. Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea 2017;36(6):637–641. DOI: 10.1097/ICO.0000000000001202 25. Aghamollaei H, Hashemian H, Safabakhsh H, Halabian R, Baghersad M, Jadidi K. Safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-Derived Mesenchymal Stem Cells in an experimental animal model. Experimental Eye Research 2019; 205:108451. DOI: 10.1016/j.exer.2021.108451 26. Espana EM, Sun M, Birk DE. Existence of corneal endothelial slow-cycling cells. Investigative Ophthalmology Visual Science 2015;56(6):3827–3837. DOI: 10.1167/iovs.14-16030 27. Rolev K, Coussons P, King L, Rajan M. Experimental models of corneal endothelial cell therapy and translational challenges to clinical practice Visual acuity. Experimental Eye Research. 2019;188:107794. Available from: https://doi.org/10.1016/j.exer.2019.107794 28. Peh GSL, Ong HS, Adnan K, Ang HP, Lwin CN, Seah XY, et al. Functional Evaluation of Two Corneal Endothelial Cell-Based Therapies: Tissue-Engineered Construct and Cell Injection. Scientific Report. 2019;9(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-019-42493-3 29. Wahlig S, Peh GSL, Adnan K, Ang HP, Lwin CN, Morales-Wong F, et al. Optimisation of Storage and Transportation Conditions of Cultured Corneal Endothelial Cells for Cell Replacement Therapy. Scientific Report. 2020;10(1):1–14. 30. Therapy C, Ong HS, Peh G, Jin D, Neo H, Ang H, et al. A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for. Cells 2020; 9 (6): 1–19. DOI: 10.3390/cells9061428 31. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. The New England Journal of Medicine. 2018;378(11):995–1003. DOI: 10.1056/NEJMoa1712770 32. Gouveia RM, Connon CJ. Biomechanical modulation therapy—a stem cell therapy without stem cells for the treatment of severe ocular burns. Translational Visual Science & Technology. 2020;9(12):1–11. doi:https://doi.org/10.1167/tvst.9.12.5 33. Tao H, Chen X, Cao H, Zheng L, Li Q, Zhang K, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair. Stem Cells International 2019 9; 5738510 DOI: 10.1155/2019/5738510 34. Park GW, Heo J, Kang JY, Yang JW, Kim JS, Kwon KD, et al. Topical cell-free conditioned media harvested from adipose tissue-derived stem cells promote recovery from corneal epithelial defects caused by chemical burns. Scientific Report. 2020;10(1):1–15. Available from: https://doi.org/10.1038/s41598-020-69020-z 35. Hertsenberg AJ, Funderburgh JL. Generation of corneal keratocytes from human embryonic stem cells. In: Embryonic Stem Cell Protocols. Springer; 2015. p. 285–94. DOI: 10.1007/7651_2015_231 36. Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, et al. Directed differentiation of human embryonic stem cells to neural crest stem cells, functional peripheral neurons, and corneal Keratocytes. Biotechnology Journal. 2017;12(12):1700067. https://doi.org/10.1002/biot.201700067 37. Naylor RW, McGhee CNJ, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11(10):e0165464. DOI: 10.1371/journal.pone.0165464 38. Park SH, Kim KW, Chun YS, Kim JC. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium. Experimetal Eye Research. 2012;101:16–26. DOI: 10.1016/j.exer.2012.05.009 39. Damala M, Singh V. Corneal Regeneration. 2019;1:13–22. Available from: http://link.springer.com/10.1007/978-3-030-01304-2 40. Zhang K, Pang K, Wu X. Isolation and Transplantation of Corneal Endothelial Cell--Like Cells Derived from In-Vitro-Differentiated Human Embryonic Stem Cells. Stem Cells Dev. 2014;23(12):1340–54. 41. McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):e0145266. DOI: 10.1371/journal.pone.0145266 42. Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Investigative Ophthalmology Visual Science. 2016;57(15):6878–6884. doi: 10.1167/iovs.16-20024 43. Chen P, Chen J-Z, Shao C-Y, Li C-Y, Zhang Y-D, Lu W-J, et al. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Experimental and Therapeutic Medicine. 2015;9(2):351–360. doi: 10.3892/etm.2014.2103 44. Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Molecular Vision 2012;18:547-564. 45. Zarei-Behjani Z, Soleimani M, Atashi A, Ebrahimi-Barough S, Ai J, Hamidieh AA. Tracking of GFP-labeled unrestricted somatic stem cells transplanted in the sepsis mouse model. Tissue Cell. 2019;60:33–37. Available from: https://doi.org/10.1016/j.tice.2019.07.009 46. Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, Marti G, et al. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments. Stem Cell Reviews and Reports. 2016;12(5):553–559. Available from: http://dx.doi.org/10.1007/s12015-016-9670-8 47. Toda M, Yukawa H, Yamada J, Ueno M, Kinoshita S, Baba Y, et al. In vivo fluorescence visualization of anterior chamber injected human corneal endothelial cells labeled with quantum dots. Investigative Ophthalmology Visual Science. 2019;60(12):4008–4020. doi:https://doi.org/10.1167/iovs.19-27788 48. Sarwat S, Stapleton F, Willcox M, Roy M. Quantum Dots in Ophthalmology: A Literature Review. Current Eye Research. 2019;44(10):1037–1046. Available from: http://dx.doi.org/10.1080/02713683.2019.1660793