Effective and Safe Control of Plague-Carrying Fleas Using Insect Growth Regulators: A Review Study

Document Type : Review

Authors

1 Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

The use of blood-sucking insects is one of the most important methods for pathogen prevalence in biological warfare. Fleas are one of the most important insects in transmitting microbial agents. Developing and updating new and specific methods of insect control is essential for passive defense and preparation of biological attacks as well as unexpected disease epidemics. For successful flea management, the used strategies must be selective and have minimal impact on the environment and humans. In the current study, effects of hormone-like compounds and IGRs on fleas control have been reviewed. Databases including EMBASE, PubMed, Scopus, Science direct, Citation Index, and Google Scholar were used as authentic sources. To retrieve the data, the search strategy and selection of articles was based on the keywords including Control, Fleas, Siphonaptera, Insect growth regulator, Insect hormone mimics, with different possible combinations were performed. We also used the keywords mainly mentioned in the titles of the articles without time limit but limited to 2020. The results of the study demonstrated that among the commercial growth regulators including juvenile hormone analogues, ecdysteroid agonists, and chitin synthesis inhibitors, the juvenile hormone analogues and chitin synthesis inhibitors have been most effective against fleas. In addition to their specificity, the growth regulators apart their safety are also considered persistant then their counterparts. These compounds can suppress flea populations and prevent the continued use of chemical pesticides. On the other hand, they impair resistance development in fleas. When fleas are used in biological warfare, growth regulators such as pyriproxyfen and lufenuron can disrupt flea survival and reproduction and control flea populations in a short while without harming own forces.

Keywords


1. Mehrabi Tavana AJ. 46 health tips in preventing the dangers of using biological agents in microbial attacks. Journal of Military Medicine. 2001; 3 (3) :113-117. http://militarymedj.ir/article-1-322-fa.html. 2. Khoobdel M, Dehghan O, Bakhshi H, Moradi M. Control and management of vector-borne diseases in disaster conditions. Journal of Military Medicine. 2020 Oct 19;22(8):778-98. doi: 10.30491/JMM.22.8.778. 3. Kaufman PE. Medical and Veterinary Entomology. Florida Entomologist. 2019 Sep;102(3):666. https://doi.org/10.1653/024.102.0321. 4. Eldridge BF, Edman JD, editors. Medical entomology: a textbook on public health and veterinary problems caused by arthropods. Springer Science & Business Media; 2012 Dec 6. doi: 10.1007/978-94-007-1009-2. 5. Chomel BB, Boulouis HJ, Maruyama S, Breitschwerdt EB. Bartonella spp. in pets and effect on human health. Emerging infectious diseases. 2006 Mar;12(3):389. doi: 10.3201/eid1203.050931. 6. Reeves WK, Rogers TE, Durden LA, Dasch GA. Association of Bartonella with the fleas (Siphonaptera) of rodents and bats using molecular techniques. Journal of vector ecology. 2007 Jun;32(1):118-22. doi: 10.3376/1081-1710. 7. Taj sharififar S. Dealing with the plague as a biological weapon. Journal of the school of army nursing. 2011 May; 18: 6-12. http://eprints.ajaums.ac.ir/id/eprint/1664. 8. Koblentz G. Pathogens as weapons: the international security implications of biological warfare. International security. 2004 Jan;28(3):84-122. doi: 10.1162/016228803773100084. 9. Lewis RE. Résumé of the Siphonaptera (Insecta) of the world. Journal of Medical Entomology. 1998 Jul 1;35(4):377-89. doi: 10.1093/jmedent/35.4.377. 10. Medvedev SG, Kotti BK. Host associations and origin in the formation of the Caucasian fauna of fleas (Siphonaptera). Entomological review. 2013 Jun;93(3):293-308. doi: 10.1134/S0013873813030032. 11. Pourian H, Khoobdel M, Alizadeh M, Stored-grains pests and their control with emphasis on military food warehouses in Iran: a review. Journal of Military Medicine, 2019, 21.4: 313-324.‌ http://militarymedj.ir/article-1-2127-fa.html. 12. Khoobdel M, Shayeghi M, Alamdar K, Piazak N, Bazrafkan S. Diversity and relative abundance of medically important fleas in the rural areas of Kohgiloye-and-Boyerahmad, Iran. Journal of School of Public Health & Institute of Public Health Research. 2012 Jan 1;9(3). doi: 10.1016/S2222-1808(14)60321-2. 13. Maleki-Ravasan N, Solhjouy-Fard S, Beaucournu JC, Laudisoit A, Mostafavi E. The fleas (Siphonaptera) in Iran: diversity, host range, and medical importance. PLoS neglected tropical diseases. 2017 Jan 9;11(1):e0005260. doi: 10.1371/journal.pntd.0005260. 14. Rust MK. Insecticide resistance in fleas. Insects. 2016 Mar;7(1):10. doi: 10.3390/insects7010010. 15. Rust MK. The biology and ecology of cat fleas and advancements in their pest management: a review. Insects. 2017 Dec;8(4):118. doi: 10.3390/insects8040118. 16. Rust MK, Lance W, Hemsarth H. Synergism of the IGRs methoprene and pyriproxyfen against larval cat fleas (Siphonaptera: Pulicidae). Journal of Medical Entomology. 2016 May 1;53(3):629-33. doi: 10.1093/jme/tjw010. 17. Blagburn BL, Dryden MW. Biology, treatment, and control of flea and tick infestations. Veterinary Clinics: Small Animal Practice. 2009 Nov 1;39(6):1173-200. doi: 10.1016/j.cvsm.2009.07.001. 18. Subramanyam B, Hagstrum DW, editors. Alternatives to pesticides in stored-product IPM. Springer Science & Business Media; 2012 Dec 6. doi: 10-1007/978-1-4615-4353-4. 19. Goodman WG, Cusson ML. The juvenile hormones. In Insect endocrinology 2012 Jan 1 (pp. 310-365). Academic Press. doi: 10.1016/B978-0-12-384749-2.10008-1. 20. Sláma K. Insect hormones: more than 50-years after the discovery of insect juvenile hormone analogues (JHA, juvenoids). Terrestrial Arthropod Reviews. 2013 Mar 31;6(4):257-333. doi: 10.1163/18749836-06041073. 21. Pener MP, Simpson SJ. Locust phase polyphenism: an update. Advances in insect physiology. 2009 Jan 1;36:1-272. doi: 10.1016/S0065-2806(08)36001-9. 22. Shayegan D, Sendi JJ, Sahragard A, Zibaee A. Immunological and antioxidant responses of larval Helicoverpa armigera (Lepidoptera: Noctuidae) to gibberellic acid in the diet. Invertebrate Survival Journal. 2019 Mar 28:48-59. doi: 10.25431/1824-307X/isj.v0i0.48-59. 23. Cossi PF, Herbert LT, Yusseppone MS, Pérez AF, Kristoff G. Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). Ecotoxicology and environmental safety. 2020 Apr 1;192:110248. doi: 10.1016/j.ecoenv.2020.110248. 24. Shayegan D, Sendi JJ, Sahragard A, Zibaee A. Influence of gibberellic acid on life table parameters of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in laboratory conditions. International Journal of Tropical Insect Science. 2019 Sep 1;39(3):195-202. doi: 10.1007/s42690-019-00004-x. 25. Slama K. A new look at the nature of insect juvenile hormone with particular reference to studies carried out in the Czech Republic. EJE. 2015 Nov 21;112(4):567-90. doi: 10.14411/eje.2015.073. 26. Shayegan D, Jalali Sendi J, Sahragard A, Zibaee A. Antifeedant and cytotoxic activity of gibberellic acid against Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Physiological Entomology. 2019 Jun;44(2):169-76. doi: 10.1111/phen.12287. 27. Henrick CA. Methoprene. Journal of the American Mosquito Control Association. 2007 Jul;23(sp2):225-39. doi: 10.2987/8756-971X(2007)23[225:M]2.0.CO;2. 28. Siddall JB. Insect growth regulators and insect control: a critical appraisal. Environmental health perspectives. 1976 Apr;14:119-26. doi: 10.1289/ehp.7614119. 29. Mascari TM, Clark J, Gordon S, Mitchell MA, Rowton ED, Stout R, Foil LD. Oral treatment of rodents with insecticides for control of sand flies (Diptera: Psychodidae) and the fluorescent tracer technique (FTT) as a tool to evaluate potential sand fly control methods. Journal of Vector Ecology. 2011 Mar;36:S132-7. doi: 10.1111/j.1948-7134.2011.00122.x. 30. Suman DS, Wang Y, Bilgrami AL, Gaugler R. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Tropica. 2013 Oct 1;128(1):103-9. doi: 10.1016/j.actatropica.2013.06.025 31. Erler F, Polat E, Demir H, Catal M, Tuna G. Control of mushroom sciarid fly Lycoriella ingenua populations with insect growth regulators applied by soil drench. Journal of Economic Entomology. 2011 Jun 1;104(3):839-44. doi: 10.1603/EC10292 32. Moser BA, Koehler PG, Patterson RS. Effect of methoprene and diflubenzuron on larval development of the cat flea (Siphonaptera: Pulicidae). Journal of economic entomology. 1992 Feb 1;85(1):112-6. doi: 10.1093/jee/85.1.112. 33. Chamberlain WF, Maciejewska J, Matter JJ. Response of the larvae and pupae of the oriental rat flea (Siphonaptera: Pulicidae) to chemicals of different chemical types. Journal of economic entomology. 1988 Oct 1;81(5):1420-5. doi: 10.1093/jee/81.5.1420. 34. Henrick CA. Methoprene. Journal of the American Mosquito Control Association. 2007 Jul;23(sp2):225-39. doi:10.2987/8756-971X(2007)23[225:M]2.0.CO;2 35. Lawler SP. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicology and environmental safety. 2017 May 1;139:335-43. doi: 10.1016/j.ecoenv.2016.12.038. 36. Charmillot PJ, Pasquier D, Salamin C, Ter‐Hovannesyan A. Ovicidal and larvicidal effectiveness of insecticides applied by dipping apples on the small fruit tortrix Grapholita lobarzewskii. Pest Management Science: formerly Pesticide Science. 2007 Jul;63(7):677-81. doi: 10.1002/ps.1373. 37. Sullivan JJ, Goh KS. Environmental fate and properties of pyriproxyfen. Journal of pesticide science. 2008 Nov 25;33(4):339-50. doi: 10.1584/jpestics.R08-02. 38. Dhadialla TS, Retnakaran A, Smagghe G. Insect growth-and development-disrupting insecticides. InInsect development: morphogenesis, molting and metamorphosis 2009 (pp. 679-740). Academic Press. doi: 10.1584/jpestics.R08-02. 39. Bensebaa F, Kilani-Morakchi S, Aribi N, Soltani N. Evaluation of pyriproxyfen, a juvenile hormone analog, on Drosophila melanogaster (Diptera: Drosophilidae): Insecticidal activity, ecdysteroid contents and cuticle formation. Eur. J. Entomol. 2015 Jul 21;112(4):625-31. doi: 10.14411/eje.2015.084. 40. Meola RW, Dean SR, Bhaskaran G. Effects of juvenile hormone on eggs and adults of the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology. 2001 Jan 1;38(1):85-92. doi: 10.1603/0022-2585-38.1.85. 41. El-Gazzar LM, Koehler PG, Patterson RS, Milio J. Insect growth regulators: mode of action on the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of medical entomology. 1986 Dec 4;23(6):651-4. doi: 10.1093/jmedent/23.6.651. 42. Kobayashi Y, Ono Y, Yoshioka Y, Okano T. Effect of juvenile hormone analogues, pyriproxyfen and methoprene, against the cat flea, Ctenocephalides felis (Bouche). Japanese Journal of Sanitary Zoology. 1994;45:245-251. doi: 10.7601/mez.45.245. 43. Rajapakse CN, Meola R, Readio J. Comparative evaluation of juvenoids for control of cat fleas (Siphonaptera: Pulicidae) in topsoil. Journal of medical entomology. 2002 Nov 1;39(6):889-94. doi: 10.1603/0022-2585-39.6.889. 44. Hinkle NC, Koehler PG, Patterson RS. Residual effectiveness of insect growth regulators applied to carpet for control of cat flea (Siphonaptera: Pulicidae) larvae. Journal of economic entomology. 1995 Aug 1;88(4):903-6. doi: 10.1093/jee/88.4.903. 45. Moser BA, Koehler PG, Patterson RS. Effect of methoprene and diflubenzuron on larval development of the cat flea (Siphonaptera: Pulicidae). Journal of economic entomology. 1992 Feb 1;85(1):112-6. doi: 10.1093/jee/85.1.112. 46. Dryden MW, Smith V, Davis WL, Settje T, Hostetler J. Evaluation and comparison of a flumethrin-imidacloprid collar and repeated monthly treatments of fipronil/(s)-methoprene to control flea, Ctenocephalides f. felis, infestations on cats for eight months. Parasites & vectors. 2016 Dec;9(1):1-6. doi: 10.1186/s13071-016-1575-5. 47. Miller RJ, Broce AB, Dryden MW, Hopkins T. Susceptibility to insect growth regulators and cuticle deposition of the cat flea (Siphonaptera: Pulicidae) as a function of age. Journal of medical entomology. 1999 Nov 1;36(6):780-7. doi: 10.1093/jmedent/36.6.780. 48. Jacobs, D.E., Hutchinson, M.J., Krieger, K.J., Bardt, D., 1996. A novel approach to flea control on cats, using pyriproxyfen. Vet. Record 139, 559–561. doi: 10.1136/vr.139.23.559. 49. Maynard L, Houffschmitt P, Lebreux B. Field efficacy of a 10 per cent pyriproxyfen spot‐on for the prevention of flea infestations on cats. Journal of Small Animal Practice. 2001 Oct;42(10):491-4. doi: 10.1111/j.1748-5827.2001.tb02454.x. 50. Kawada H, Hirano M. Insecticidal effects of the insect growth regulators methoprene and pyriproxyfen on the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology. 2014 Sep 11;33(5):819-22. doi.: 10.1093/jmedent/33.5.819. 51. Miller RJ, Broce AB, Dryden MW, Hopkins T. Susceptibility to insect growth regulators and cuticle deposition of the cat flea (Siphonaptera: Pulicidae) as a function of age. Journal of medical entomology. 1999 Nov 1;36(6):780-7. doi: 10.1093/jmedent/36.6.780. 52. Stanneck D, Larsen KS, Mencke N. Pyriproxyfen concentration in the coat of cats and dogs after topical treatment with a 1.0% w/v spot‐on formulation. Journal of veterinary pharmacology and therapeutics. 2003 Jun;26(3):233-5. doi: 10.1046/j.1365-2885.2003.00467.x. 53. Young DR, Jeannin PC, Boeckh A. Efficacy of fipronil/(S)-methoprene combination spot-on for dogs against shed eggs, emerging and existing adult cat fleas (Ctenocephalides felis, Bouche). Veterinary Parasitology 2004; 125: 397–407. doi:10.1016/j.vetpar.2004.07.021. 54. Palma KG, Meola RW. Field evaluation of Nylar for control of cat fleas (Siphonaptera: Pulicidae) in home yards. Journal of medical entomology. 1990 Sep 1;27(6):1045-9. doi: 10.1093/jmedent/27.6.1045. 55. Karhu R, Anderson S. Effects of pyriproxyfen spray, powder, and oral bait treatments on the relative abundance of fleas (Siphonaptera: Ceratophyllidae) in black-tailed prairie dog (Rodentia: Sciuridae) towns. Journal of medical entomology. 2000 Nov 1;37(6):864-71. doi: 10.1603/0022-2585-37.6.864. 56. Jacobs DE, Hutchinson MJ, Krieger KJ, Bardt D. A novel approach to flea control on cats, using pyriproxyfen. Veterinary record. 1996 Dec 7;139(23):559-61. doi:10.1136/vr.139.23.559. 57. Rasa CG, Meola RW, Schenker R. Effects of a new insect growth regulator, CGA-255′ 728, on the different stages of the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology. 2000 Jan 1;37(1):141-5. doi: 10.1603/0022-2585-37.1.141. 58. Marchiondo AA, Riner JL, Sonenshine DE, Rowe KF, Slusser JH. Ovicidal and larvicidal modes of action of fenoxycarb against the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology. 1990 Sep 1;27(5):913-21. doi: 10.1093/jmedent/27.5.913. 59. Dean SR, Meola RW. Effect of juvenile hormone and juvenile hormone mimics on sperm transfer from the testes of the male cat flea (Siphonaptera: Pulicidae). Journal of medical entomology. 1997 Jul 1;34(4):485-8. doi: 10.1093/jmedent/34.4.485. 60. Abai MR, Vatandoost H, Parvin A, Bojd AA, Raeisi A. Malaria control activities in Iran and novel evaluation of pyriproxyfen as an insect growth regulator (IGR) against malaria vectors in a malarious area. Journal of Entomology and Zoology Studies. 2019;7(4):27-31. http://: JEZS 2019; 7(4): 27-31 61. Filshie BK. Fine structure of the cuticle of insects and other arthropods. In Insect ultrastructure 1982 (pp. 281-312). Springer, Boston, MA. doi: 10.1007/978-1-14615-7266-4-10. 62. Cossi PF, Herbert LT, Yusseppone MS, Pérez AF, Kristoff G. Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). Ecotoxicology and environmental safety. 2020 Apr 1;192:110248. doi: 10.1016/j.ecoenv.2020.110248. 63. Acheuk F, Cusson M, Doumandji-Mitiche B. Effects of a methanolic extract of the plant Haplophyllum tuberculatum and of teflubenzuron on female reproduction in the migratory locust, Locusta migratoria (Orthoptera: Oedipodinae). Journal of Insect physiology. 2012 Mar 1;58(3):335-41. doi: 10.1016/j.jinsphys.2011.12.004. 64. V Joseph S. Ingestion of novaluron elicits transovarial activity in Stephanitis pyrioides (Hemiptera: Tingidae). Insects. 2020 Apr;11(4):216. doi: 10.3390/insects11040216. 65. Pener MP, Dhadialla TS. An overview of insect growth disruptors; applied aspects. Advances in insect physiology. 2012 Jan 1;43:1-62. doi: 10.1016/B978-0-12-391500-9.00001-2. 66. Sun R, Liu C, Zhang H, Wang Q. Benzoylurea chitin synthesis inhibitors. Journal of agricultural and food chemistry. 2015 Aug 12;63(31):6847-65. doi: 10.1021/acs.jafc.5b02460. 67. El-Gazzar, L.M., Patterson, R.S. and Koehler, P.G., 1988. Activity of chitin synthesis inhibitors on the cat flea, Ctenocephalides felis Bouche. Journal of Agricultural Entomology, 5(2), pp.117-120. 68. Friedel T. Cyromazine inhibits larval development of the dog flea, Ctenocephalides canis (Siphonaptera: Pulicidae). Journal of economic entomology. 1986 Jun 1;79(3):697-9. doi: 10.1093/jee/79.3.697. 69. Rust MK, Hemsarth WL. Intrinsic Activity of IGRs and Insecticides Against Cat Fleas, 2016–2018. Arthropod Management Tests. 2020;45(1):tsz095. doi: 10.1093/amt/tsz095. 70. Henderson G, Foil LD. Efficacy of diflubenzuron in simulated household and yard conditions against the cat flea Ctenocephalides felis (Bouche)(Siphonoptera: Pulicidae). Journal of medical entomology. 1993 May 1;30(3):619-21. doi: 10.1093/jmedent/30.3.619. 71. Krämer F, Mencke N. Flea biology and control: the biology of the cat flea control and prevention with imidacloprid in small animals. Springer Science & Business Media; 2012 Dec 6. doi: 10.1007/978-3-642-56609-7. 72. Davis RM. Use of orally administered chitin inhibitor (lufenuron) to control flea vectors of plague on ground squirrels in California. Journal of medical entomology. 1999 Sep 1;36(5):562-7. doi: 10.1093/jmedent/36.5.562. 73. Dean SR, Meola RW, Meola SM, Sittertz-Bhatkar H, Schenker R. Mode of action of lufenuron on larval cat fleas (Siphonaptera: Pulicidae). Journal of medical entomology. 1998 Sep 1;35(5):720-4. doi: 10.1093/jmedent/35.5.720. 74. Dean SR, Meola RW, Meola SM, Sittertz-Bhatkar H, Schenker R. Mode of action of lufenuron in adult Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of medical entomology. 1999 Jul 1;36(4):486-92. doi: 10.1093/jmedent/36.4.486. 75. Blagburn BL, Dryden MW. Biology, treatment, and control of flea and tick infestations. Veterinary Clinics: Small Animal Practice. 2009 Nov 1;39(6):1173-200. doi: 10.1016/j.cvsm.2009.07.001. 76. Meola RW, Dean SR, Meola SM, Sittertz-Bhatkar H, Schenker R. Effect of lufenuron on chorionic and cuticular structure of unhatched larval Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of medical entomology. 1999 Jan 1;36(1):92-100. doi: 10.1093/jmedent/36.1.92. 77. Hovda LR, Hooser SB. Toxicology of newer pesticides for use in dogs and cats. Veterinary Clinics: Small Animal Practice. 2002 Mar 1;32(2):455-67. doi: 10.1016/S0195-5616(01)00013-4. 78. Davis RM, Cleugh E, Smith RT, Fritz CL. Use of a chitin synthesis inhibitor to control fleas on wild rodents important in the maintenance of plague, Yersinia pestis, in California. Journal of Vector Ecology. 2008 Dec;33(2):278-84. doi: 10.3376/1081-1710-33.2.278. 79. Fahmy, M.M.; El-Dien, N.M.E. Control of Ctenocephalides felis on dogs and cats using the insect growth regulator (or chitin synthesis inhibitor) lufenuron Program®, in Egypt. Journal of the Egyptian Society of Parasitology. 2002 Apr;32(1):99-108. doi: 10.3390/insects8040118. 80. Rust MK, Hemsarth WL. Intrinsic activity of IGRs against larval cat fleas. Journal of medical entomology. 2017 Mar 1;54(2):418-21. doi: 10.1093/jme/tjw201. 81. Shah Hosseini MH, Bioterrorism is the specter of biological warfare. Journal of military medicine. 2002; 3 (4) :201-209. http://militarymedj.ir/article-1-312-fa.html. 82. Jalali Farahani A, Hosseini Zijoud SR. Management of biological threats and bioterrorism in massive human gathering. Journal of military medicine. 2019 Nov 10;21(5):425-6.