1.Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances. 2019;1(5):1640-71.
2.Zaroushani V, Khavanin A, Mortazavi S, Jnonidi A, Moieni M, Javadzadeh M. The role of a new electromagnetic shielding in reducing the microwave radiation for the X-band frequencies. Iran Occupational Health. 2015;12(5):83-99.
3.Lalan V, Ganesanpotti S. Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe 3 O 4 Nanoparticles Reinforced Polyvinylidenefluoride Composites. Journal of Electronic Materials. 2020;49(3):1666-76.
4.Kausar A. Electromagnetic interference shielding of polyaniline/Poloxalene/carbon black composite. Int J Mater Chem. 2016;6(1):6-11.
5.Zhang D, Chen H, Hong R. Preparation and Conductive and Electromagnetic Properties of Fe3O4/PANI Nanocomposite via Reverse In Situ Polymerization. Journal of Nanomaterials. 2019;2019.
6.Nakhaei O, Shahtahmassebi N, Roknabadi MR, Behdani M. Synthesis, UV-shielding and electromagnetic wave absorbing properties of polyvinylpyrrolidone-$$hbox {TiO} _ {2} $$/polyacrylonitrile-$$hbox {SiO} _ {2} $$ SiO2 nanofibre nanocomposites. Bulletin of Materials Science. 2019;42(1):42.
7.IARC W. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Press Release N: 208. 2011.
8.Standard RP. Maximum exposure levels to radiofrequency fields—3 KHz to 300 GHz. Radiation Protection Series. 2002;3.
9.Chung DD. Materials for electromagnetic interference shielding. Materials Chemistry and Physics. 2020:123587.
10.Samková A, Kulhavy P, Tunáková V, Petru M. Improving electromagnetic shielding ability of plaster-based composites by addition of carbon fibers. Advances in Materials Science and Engineering. 2018;2018.
11.Singh AK, Srivastava O, Singh K. Shape and size-dependent magnetic properties of Fe 3 O 4 nanoparticles synthesized using piperidine. Nanoscale research letters. 2017;12(1):1-7.
12.El Ghandoor H, Zidan H, Khalil MM, Ismail M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci. 2012;7(6):5734-45.
13.Chen Y, Wang Y, Zhang H-B, Li X, Gui C-X, Yu Z-Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon. 2015;82:67-76.
14.Rao BB, Chengappa M, Kale S. Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced X-band electromagnetic interference shielding. Materials Research Express. 2017;4(4):045012.
15.Chao Z, Yu Y, Lei F, Hu D. A lightweight and flexible CNT/Fe3O4 composite with high electromagnetic interference shielding performance. CARBON LETTERS. 2020.
16.Gubarevich AV, Komoriya K, Odawara O. Electromagnetic Interference Shielding Efficiency in the Range 8.2-12.4 GHz of Polymer Composites with Dispersed Carbon Nanoparticles. Eurasian Chemico-Technological Journal. 2012;14(1):55-9.
17.Chen W, Wang J, Zhang B, Wu Q, Su X. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites. Materials Research Express. 2017;4(12):126303.
18.Liu L, Bian X-M, Hou Z-L, Wang C-Y, Li ZS, Hu HD, et al. Electromagnetic response of magnetic graphene hybrid fillers and their evolutionary behaviors. Journal of Materials Science: Materials in Electronics. 2016;27(3):2760-72.
19.Wang X. Investigation of Electromagnetic Shielding Effectiveness of Nanostructural Carbon Black/ABS Composites. Journal of Electromagnetic Analysis and Applications. 2011;2011.
20.Kuzhir PP, Paddubskaya AG, Maksimenko SA, Kaplas T, Svirko Y. Microwave absorption properties of pyrolytic carbon nanofilm. Nanoscale research letters. 2013;8(1):1-6.
21.Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z, et al. Recent progress in some composite materials and structures for specific electromagnetic applications. International Materials Reviews. 2013;58(4):203-59.
22.jafarian m, omid m, khanali m, MokhtariMotameniShirvan M. Thermal Conductivity Enhancement of Phase Change Material for Thermal Energy Storage Using Nanotechnology. Iranian Journal of Biosystems Engineering. 2019;50(2):319-29.
23.Wang J, Wang J, Zhang B, Sun Y, Chen W, Wang T. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption. Journal of Magnetism and Magnetic Materials. 2016;401:209-16.
24.Saravanan P, TR SK, Radha R, Balasubramaniam M, Balakumar S. Enhanced shielding effectiveness in nanohybrids of graphene derivatives with Fe 3 O 4 and ε-Fe 3 N in the X-band microwave region. Nanoscale. 2018;10(25):12018-34.
25.Ma Z, Zhang Y, Cao C, Yuan J, Liu Q, Wang J. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Physica B: Condensed Matter. 2011;406(24):4620-4.
26.Hosseinabadi S, Jafari MJ, Kokabi M, Mohseni M. Improving the electromagnetic shielding of fabricated NdFeB particles by a coating thin carbonaceous layer. Chemical Physics Letters. 2020;739:137015.
27.Massango H, Tsutaoka T, Kasagi T. Electromagnetic properties of Fe53Ni47 and Fe53Ni47/Cu granular composite materials in the microwave range. Materials Research Express. 2016;3(9):095801.
28.Manafi P, Ghasemi I, Manafi MR, Ehsaninamin P, Asl FH. Non-isothermal crystallization kinetics assessment of poly (lactic acid)/graphene nanocomposites. Iranian Polymer Journal. 2017;26(5):377-89.
29.Furlan L, Ferreira C, Dal Castel C, Santos K, Mello A, Liberman S, et al. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites. Materials Science and Engineering: A. 2011;528(22-23):6715-8.
30.Ahmad AF, Abbas Z, Obaiys SJ, Ibrahim N, Hashim M, Khaleel H. Theoretical and numerical approaches for determining the reflection and transmission coefficients of OPEFB-PCL composites at X-Band frequencies. PloS one. 2015;10(10):e0140505.
31.Bachir G, Abdechafik H, Mecheri K, editors. Comparison electromagnetic shielding effectiveness between single layer and multilayer shields. 2016 51st International Universities Power Engineering Conference (UPEC); 2016: IEEE.