New Methods for Identifying Microorganisms as potential bioterrorism agents with Emphasis on Chromatography-Mass Spectrophotometry (GC-MS): Narrative Review

Document Type : Review

Authors

1 Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Bam University of Medical Sciences, Bam,

3 School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Today, with the development of microbiology, biotechnology, and cellular and molecular genetics, human knowledge of microorganisms has increased and the possibility of making biological weapons with pervasive effects has increased. On the other hand, bioterrorist events and the construction of laboratories and sites for the production of biological weapons in many developed and developing countries emphasize the need for rapid identification and determination of these bio-threatening agents. Accurate identification of such agents is important not only for the validation of a bioterrorism operation, but also for the timely implementation of appropriate measures for the biological agent to protect public health. As mentioned above, the biotheroism agents are very diverse and wide-ranging, hence it is always difficult and complex to identify these agents. Various methods have been introduced for detecting them. Some methods have been used for years, but some are still develoing. There are many problems in identifying and diagnosing bioterrorism agents, some of them are specific to one method, but some are common to all commonly used methods and developing methods. Therefore, this study aimed to investigate and review studies on the new methods of identifying microorganisms with bioterrorism potential from 2000 to 2020 as a review study.

Keywords


1. Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical microbiology reviews. 2005;18(4):583-607. doi:10.1128/CMR.18.4.583-607.2005 2. Pejmankhah S, Pejmankhah S, Mirhaghi A. Effect of bioterrorism training through lecture and educational pamphlet on knowledge of medical staff in hospitals of iranshahr, iran in 2010. 2012. 3. Shoham D. Bioterrorism. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing. 2010:1-127. doi:10.1002/9780470571224.pse339 4. Bronze MS, Greenfield RA. Biodefense: principles and pathogens: Horizon Bioscience Norfolk (UK); 2005. 5. Pappas G, Panagopoulou P, Akritidis N. Reclassifying bioterrorism risk: are we preparing for the proper pathogens? Journal of infection and public health. 2009;2(2):55-61. doi:10.1016/j.jiph.2009.03.002 6. Mirnejad R. Laboratory diagnosis and biological safety aspects of war, biological software. Journal of Medical Sciences. 2003;4(4):273-80. 7. Klietmann WF, Ruoff KL. Bioterrorism: implications for the clinical microbiologist. Clinical Microbiology Reviews. 2001;14(2):364-81. doi:10.1128/CMR.14.2.364-381.2001 8. Tucker JB. Historical trends related to bioterrorism: An empirical analysis. Emerging Infectious Diseases. 1999;5(4):498. doi:10.3201/eid0504.990406 9. Gharatappeh A, Memariyani M, Lellahi S, Tajvidi M, Doragi E. Early detection of bioterrorism agents by nano-sensors. EBNESINA. 2008;11(1):35-40. 10. Lasch P, Drevinek M, Nattermann H, Grunow R, Stämmler M, Dieckmann R, et al. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Analytical chemistry. 2010;82(20): 8464-75. doi:10.1021/ac101036s 11. Fykse E, Langseth B, Olsen J, Skogan G, Blatny J. Detection of bioterror agents in air samples using real‐time PCR. Journal of applied microbiology. 2008;105(2):351-8. doi:10.1111/j.1365-2672.2008.03750.x 12. He J, Kraft AJ, Fan J, Van Dyke M, Wang L, Bose ME, et al. Simultaneous detection of CDC category" A" DNA and RNA Bioterrorism agents by use of multiplex PCR & RT-PCR enzyme hybridization assays. Viruses. 2009;1(3):441-59. doi:10.3390/v1030441 13. Nitsche A, Stern D, Ellerbrok H, Pauli G. Detection of infectious poxvirus particles. Emerging infectious diseases. 2006;12(7):1139. doi:10.3201/eid1207.060093 14. Xu Q, Liu H, Yuan P, Zhang X, Chen Q, Jiang X, et al. Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Fallén). Virology journal. 2017;14(1):90. doi:10.1186/s12985-017-0732-6 15. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3). doi:10.2807/1560-7917.ES.2020.25.3.2000045 16. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods in enzymology. 70: Elsevier; 1980. p. 419-39. doi:10.1016/S0076-6879(80)70067-8 17. Collins AM, Jackson KJ. On being the right size: antibody repertoire formation in the mouse and human. Immunogenetics. 2018;70(3):143-58. doi:10.1007/s00251-017-1049-8 18. Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9(6):4407-45. doi:10.3390/s90604407 19. Hatamifar M, Mosavari N, Kazemi J. Designing of Indirect ELISA system using secreted antigens of Mycobacterium avium subsp. paratuberculosis for Diagnosis of paratuberculosis. Iranian Journal of Medical Microbiology. 2017;11(2):26-33. 20. Jenko KL, Zhang Y, Kostenko Y, Fan Y, Garcia-Rodriguez C, Lou J, et al. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst. 2014;139(20):5093-102. doi:10.1039/C4AN01270D 21. Čapek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins. 2010;2(1):24-53. doi:10.3390/toxins2010024 22. Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of microbiological methods. 2017;138:60-71. doi:10.1016/j.mimet.2016.02.016 23. Fournier P-E, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome medicine. 2014;6(11): 114. doi:10.1186/s13073-014-0114-2 24. Segerman B, De Medici D, Schulz ME, Fach P, Fenicia L, Fricker M, et al. Bioinformatic tools for using whole genome sequencing as a rapid high resolution diagnostic typing tool when tracing bioterror organisms in the food and feed chain. International journal of food microbiology. 2011;145: S167-S76. doi:10.1016/j.ijfoodmicro.2010.06.027 25. Skoog D, Leary J. Principles of instrumental analysis. Saunders College Publ., Philadelphia. Principles of instrumental analysis 4th ed Saunders College Publ, Philadelphia. 1992. 26. Bruner F. Gas chromatographic environmental analysis: principles, techniques, instrumentation: VCH New York; 1993. 27. Kitson FG, Larsen BS, McEwen CN. Gas chromatography and mass spectrometry: a practical guide: Academic Press; 1996. 28. Mondello L, Tranchida PQ, Dugo P, Dugo G. Comprehensive two‐dimensional gas chromatography‐mass spectrometry: A review. Mass spectrometry reviews. 2008;27(2):101-24. doi:10.1002/mas.20158 29. Tait E, Perry JD, Stanforth SP, Dean JR. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Journal of chromatographic science. 2014;52(4):363-73. doi:10.1093/chromsci/bmt042 30. Saraf A, Larsson L. Use of gas chromatography/ion‐trap tandem mass spectrometry for the determination of chemical markers of microorganisms in organic dust. Journal of Mass spectrometry. 1996;31(4):389-96. doi:10.1002/(SICI)1096-9888 31. Garner W, Gennaro R, editors. Gas chromatographic differentiation of closely related species of microorganisms. Abstracts, 150th Meeting Amer Chem Soc, Atlantic City, NJ, Sept; 1965. 32. Yamakawa T, Ueta N. Gaschromatographic studies of microbial components. I. Carbohydrate and fatty acid constitution of Neisseria. The Japanese journal of experimental medicine. 1964;34:361. 33. Moss CW, Lewis VJ. Characterization of Clostridia by Gas Chromatography: I. Differentiation of Species by Cellular Fatty Acids. Appl Environ Microbiol. 1967;15(2):390-7. doi:10.1128/AEM.15.2.390-397.1967 34. Larsson L, Mårdh P. Gas chromatographic characterization of mycobacteria: analysis of fatty acids and trifluoroacetylated whole-cell methanolysates. Journal of clinical microbiology. 1976; 3(2): 81-5. 35. Yang Y, Boysen RI, Chowdhury J, Alam A, Hearn MT. Analysis of peptides and protein digests by reversed phase high performance liquid chromatography-electrospray ionisation mass spectrometry using neutral pH elution conditions. Analytica chimica acta. 2015;872:84-94. doi:10.1016/j.aca.2015.02.055 36. Hines HB, Lebeda F, Hale M, Brueggemann EE. Characterization of botulinum progenitor toxins by mass spectrometry. Appl Environ Microbiol. 2005;71(8):4478-86. doi:10.1128/AEM.71.8.4478-4486.2005 37. Dupuis A, Hennekinne JA, Garin J, Brun V. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics. 2008;8(22):4633-6. doi:10.1002/pmic.200800326 38. Schmidt JG, Boyer AE, Kalb SR, Moura H, Barr JR, Woolfitt AR. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins. Google Patents; 2009. 39. McGrath SC, Schieltz DM, McWilliams LG, Pirkle JL, Barr JR. Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry. Analytical chemistry. 2011;83(8): 2897-905. doi:10.1021/ac102571f 40. Krejčí E, Kroppenstedt RM. Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. Journal of Clinical Microbiology. 2006; 44(3):1159-64. doi:10.1128/JCM.44.3.1159-1164.2006 41. Li D, March J, Bills T, Holt B, Wilson C, Lowe W, et al. Gas chromatography-mass spectrometry method for rapid identification and differentiation of B urkholderia pseudomallei and B urkholderia mallei from each other, B urkholderia thailandensis and several members of the B urkholderia cepacia complex. Journal of applied microbiology. 2013;115 (5):1159-71. doi:10.1111/jam.12310 Niessen W, Tinke A. Liquid chromatography-mass spectrometry General principles and instrumentation. Journal of Chromatography A. 1995;703(1-2):37-57. doi:10.1016/0021-9673(94)01198-N 43. Ho Y-P, Reddy PM. Identification of pathogens by mass spectrometry. Clinical Chemistry. 2010; 56(4): 525-36. doi:10.1373/clinchem.2009.138867 44. García-Cañas V, Lorbetskie B, Bertrand D, Cyr TD, Girard M. Selective and quantitative detection of influenza virus proteins in commercial vaccines using two-dimensional high-performance liquid chromatography and fluorescence detection. Analytical chemistry. 2007;79(8):3164-72. doi:10.1021/ac0621120 45. Frueh FW, Noyer-Weidner M. The use of denaturing high-performance liquid chromatography (DHPLC) for the analysis of genetic variations: impact for diagnostics and pharmacogenetics. Clinical chemistry and laboratory medicine. 2003;41 (4): 452-61.doi:10.1515/CCLM.2003.068 46. Barlaan EA, Sugimori M, Furukawa S, Takeuchi K. Profiling and monitoring of microbial populations by denaturing high-performance liquid chromatography. Journal of microbiological methods. 2005;61(3):399-412. doi:10.1016/j.mimet.2005.01.002 47. Delavy M, Cerutti L, Croxatto A, Prod'hom G, Sanglard D, Greub G, et al. Machine Learning Approach for Candida albicans Fluconazole Resistance Detection Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Frontiers in microbiology. 2020;10:3000. doi:10.3389/fmicb.2019.03000 48. Bowman AS, Asare SO, Lynn BC. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2, 5‐dihydroxyacetophenone (DHAP) matrix. Rapid Communications in Mass Spectrometry. 2019;33(8): 811-9. doi:10.1002/rcm.8406 49. Boyer AE, Gallegos-Candela M, Quinn CP, Woolfitt AR, Brumlow JO, Isbell K, et al. High-sensitivity MALDI-TOF MS quantification of anthrax lethal toxin for diagnostics and evaluation of medical countermeasures. Analytical and bioanalytical chemistry. 2015;407(10):2847-58. doi:10.1007/s00216-015-8509-5 50. Baldwin CD, Howe GB, Sampath R, Blyn LB, Matthews H, Harpin V, et al. Usefulness of multilocus polymerase chain reaction followed by electrospray ionization mass spectrometry to identify a diverse panel of bacterial isolates. Diagnostic microbiology and infectious disease. 2009;63(4):403-8. doi:10.1016/j.diagmicrobio.2008.12.012 51. Hannis JC, Manalili SM, Hall TA, Ranken R, White N, Sampath R, et al. High-resolution genotyping of Campylobacter species by use of PCR and high-throughput mass spectrometry. Journal of clinical microbiology. 2008;46(4):1220-5. doi:10.1128/JCM.02158-07 52. Ridgway H, Olson B. Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system. Appl Environ Microbiol. 1981;41(1):274-87. doi:10.1128/AEM.41.1.274-287.1981 53. Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Scientific reports. 2016;6:26516. doi:10.1038/srep26516 54. Curry A, Appleton H, Dowsett B. Application of transmission electron microscopy to the clinical study of viral and bacterial infections: present and future. Micron. 2006;37(2):91-106. doi:10.1016/j.micron.2005.10.001 55. Rahmani AR, Leili M, Azarian G, Poormohammadi A. Sampling and detection of corona viruses in air: A mini review. Science of The Total Environment. 2020;740:140207. doi:10.1016/j.scitotenv.2020.140207 56. McNulty C, Dent J, Curry A, Uff J, Ford G, Gear M, et al. New spiral bacterium in gastric mucosa. Journal of Clinical Pathology. 1989;42(6):585-91. doi:10.1136/jcp.42.6.585 57. DePamphilis M, Adler J. Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. Journal of Bacteriology. 1971;105(1):384-95. doi:10.1128/JB.105.1.384-395.1971 58. Berke T, Matson D. Reclassification of the Caliciviridae into distinct genera and exclusion of hepatitis E virus from the family on the basis of comparative phylogenetic analysis. Archives of virology. 2000;145(7):1421-36. doi:10.1007/s007050070099 59. Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clinical microbiology reviews. 2009;22(4):552-63. doi:10.1128/CMR.00027-09 60. Kuiken T, Fouchier R, Rimmelzwaan G, Osterhaus A. Emerging viral diseases in waterbirds. Waterbirds Around the World. 2006:418-21. 61. Schoub BD. Surveillance and management of influenza on the African continent. Expert review of respiratory medicine. 2010;4(2):167-9. doi:10.1586/ers.10.10 62. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367 (6485):1444-8. doi:10.1126/science.abb2762 63. Kalvatchev Z, Tsekov I, Kalvatchev N. Loop-mediated amplification for sensitive and specific detection of viruses. Biotechnology & Biotechnological Equipment. 2010;24(1):1559-61. doi:10.2478/V10133-010-0004-8 64. Karami A, Bagheri B, Ahmadi Z, Pourali F. Comparing Fluorescent Loop-Mediated Isothermal Amplification and PCR in Detecting Salmonella. Journal of Mazandaran University of Medical Sciences. 2012;22(95):48-55. 65. Kuhara T, Yoshikawa T, Ihira M, Watanabe D, Tamada Y, Katano H, et al. Rapid detection of human herpesvirus 8 DNA using loop-mediated isothermal amplification. Journal of virological methods. 2007; 144(1-2):79-85. doi:10.1016/j.jviromet.2007.03.021 66. Notomi T, Taguchi F, Kanda H, Minekawa H, Itamura S, Odagiri T, et al., editors. RT-LAMP method provides a simple, rapid and specific detection system for SARS-CoV RNA. International Conference on SARS-one year after the (first) outbreak; 2004. 67. Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. Journal of clinical microbiology. 2004;42 (1): 257-63. doi:10.1128/JCM.42.1.257-263.2004 68. Parida M, Santhosh S, Dash P, Tripathi N, Lakshmi V, Mamidi N, et al. Rapid and real-time detection of Chikungunya virus by reverse transcription loop-mediated isothermal amplification assay. Journal of clinical microbiology. 2007;45(2): 351-7. doi:10.1128/JCM.01734-06 69. Toriniwa H, Komiya T. Rapid detection and quantification of Japanese encephalitis virus by real‐time reverse transcription loop‐mediated isothermal amplification. Microbiology and immunology. 2006; 50(5):379-87. doi:10.1111/j.1348-0421.2006.tb03804.x 70. Yoshida N, Fujino M, Miyata A, Nagai T, Kamada M, Sakiyama H, et al. Mumps virus reinfection is not a rare event confirmed by reverse transcription loop‐mediated isothermal amplification. Journal of medical virology. 2008;80(3):517-23. doi:10.1002/jmv.21106 71. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: medical and public health management. Jama. 2001;285(8):1059-70. doi:10.1001/jama.285.8.1059 72. Cirino NM, Musser KA, Egan C. Multiplex diagnostic platforms for detection of biothreat agents. Expert review of molecular diagnostics. 2004;4(6): 841-57. doi:10.1586/14737159.4.6.841 73. Demirev PA, Fenselau C. Mass spectrometry in biodefense. Journal of mass spectrometry. 2008;43(11):1441-57. doi:10.1002/jms.1474 74. Asante J, Noreddin A, El Zowalaty ME. Systematic Review of Important Bacterial Zoonoses in Africa in the Last Decade in Light of the 'One Health'Concept. Pathogens. 2019;8(2):50. doi:10.3390/pathogens8020050 75. Sampath R, Mulholland N, Blyn LB, Massire C, Whitehouse CA, Waybright N, et al. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry. PLoS One. 2012;7(6). doi:10.1371/journal.pone.0036528 76. Kaleta EJ, Clark AE, Johnson DR, Gamage DC, Wysocki VH, Cherkaoui A, et al. Use of PCR coupled with electrospray ionization mass spectrometry for rapid identification of bacterial and yeast bloodstream pathogens from blood culture bottles. Journal of clinical microbiology. 2011;49(1):345-53. doi:10.1128/JCM.00936-10 77. Chenau Jrm, Fenaille Fo, Simon Sp, Filali S, Volland H, Junot C, et al. Detection of yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography-tandem mass spectrometry. Analytical chemistry. 2014;86 (12): 6144-52. doi:10.1021/ac501371r 78. Hurtle W, Shoemaker D, Henchal E, Norwood D. Denaturing HPLC for identifying bacteria. BioTechniques. 2002;33(2):386-91. doi:10.2144/02332rr05 79. Franciosa G, Pourshaban M, De Luca A, Buccino A, Dallapiccola B, Aureli P. Identification of type A, B, E, and F botulinum neurotoxin genes and of botulinum neurotoxigenic clostridia by denaturing high-performance liquid chromatography. Appl Environ Microbiol. 2004;70(7):4170-6. doi:10.1128/AEM.70.7.4170-4176.2004 80. Ghosh N, Gupta G, Boopathi M, Pal V, Singh A, Gopalan N, et al. Surface plasmon resonance biosensor for detection of Bacillus anthracis, the causative agent of anthrax from soil samples targeting protective antigen. Indian journal of microbiology. 2013;53(1):48-55. doi:10.1007/s12088-012-0334-3 81. Hong SC, Lee J, Shin H-C, Kim C-M, Park JY, Koh K, et al. Clinical immunosensing of tuberculosis CFP-10 in patient urine by surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical. 2011;160(1):1434-8. doi:10.1016/j.snb.2011.10.006 82. Tims TB, Lim DV. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. Journal of microbiological methods. 2004;59(1):127-30. doi:10.1016/j.mimet.2004.02.016 83. Hao R, Wang D, Zuo G, Wei H, Yang R, Zhang Z, et al. Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosensors and Bioelectronics. 2009;24(5):1330-5. doi:10.1016/j.bios.2008.07.071 84. Berkenpas E, Millard P, Da Cunha MP. Detection of Escherichia coli O157: H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosensors and Bioelectronics. 2006;21(12):2255-62. doi:10.1016/j.bios.2005.11.005 85. McGovern J-P, Shih WY, Rest R, Purohit M, Pandya Y, Shih W-H. Label-free flow-enhanced specific detection of Bacillus anthracis using a piezoelectric microcantilever sensor. Analyst. 2008;133(5):649-54. doi:10.1039/b715948j 86. Alam S, Uppal A, Gupta P, Kamboj D. Multiple‐reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography‐tandem mass spectrometry. Letters in applied microbiology. 2017;64(3):217-24. doi:10.1111/lam.12706 87. Mavrakis M, Kolesnikova L, Schoehn G, Becker S, Ruigrok RW. Morphology of Marburg virus NP-RNA. Virology. 2002;296(2):300-7. doi:10.1006/viro.2002.1433 88. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. The detection of monkeypox in humans in the Western Hemisphere. New England Journal of Medicine. 2004;350(4):342-50. doi:10.1056/NEJMoa032299