Design and Docking Study of Some Pyrimidine derivatives as Antimalarial Agents

Document Type : Original Research

Authors

1 azad university of medical sciences

2 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Golestan University

Abstract

Background and Aim: According to the latest estimate published by the World Health Organization in 2017, there are 219 million malaria cases and 435,000 deaths. With the emergence of drug-resistant strains in malaria, there is a need for new drug targets every time. In this study, the design and docking study of the pyrimidine derivatives for inhibiting Methionine aminopeptidase1B enzyme (Metap1b) has been considered as antimalarial agents as a new drug and against drug resistance.
Methods: Docking studies were done with the AutoDock program. The structure of the molecules was drawn with the Hyperchem program and optimized by semi-empirical method.
Results: Docking studies have shown that the most important links involved in drug binding are peptide receptor, π-cation and hydrogen bonding. Increasing the π-π and π-cation bonds in enhancing the strength of this group of compounds is effective. It was also found that Combination No. 7 was the most effective compound in binding to the active site of the enzyme.
Conclusion: Based on the results of docking studies, all designed compounds exhibit significant inhibitory effects on the active site of the enzyme, but the compound 7 showed the best inhibitory effect. According to the results of cheminformatics, compound 7 can be a candidate for a new anti-malarial drug.

Keywords


1. Mehrabi Tavana A, Khobdel M, Mirnejad R, Karimi ZA, Mehrabi Tavana M. Iraq's geographical pathology. J Mil Med. 2004; 6 (1) :25-32. 2. WHO, 2018. World Malaria Report. World Health Organization, Geneva. 3. Edrissian G. Malaria in Iran: Past and present situation. Iranian journal of parasitology. 2006;1(1):1-4. 4. Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomedicine & Pharmacotherapy. 2018; 104: 8-27. doi:10.1016/j.biopha.2018.05.009 5. Bradshaw RA, William WB, Kenneth WW. N-terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families. Trends in biochemical sciences. 1998; 7 (23) 263-267. doi:10.1016/S0968-0004(98)01227-4 6. Lowther WT, Matthews BW. Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chemical Reviews. 2002; 12 (102): 4581-4608. doi:10.1021/cr0101757 7. Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, et al. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proceedings of the National Academy of Sciences. 1995; 17(92): 7714-7718. doi:10.1073/pnas.92.17.7714 8. Ashley EA, Phyo AP, Woodrow CJ. Malaria. The Lancet. 2018 ;391(10130):1608-21. doi:10.1016/S0140-6736(18)30324-6 9. Martinez-Lopez Y, Caballero Y, Barigye S, Marrero-Ponce Y, Millan-Cabrera R, Madera J, et al. State of the art review and report of new tool for drug discovery. Current topics in medicinal chemistry. 2017;17(26):2957-76. doi:10.2174/1568026617666170821123856 10. Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proceedings of the National Academy of Sciences. 2006; 103(39): 14548-14553. doi:10.1073/pnas.0604101103 11. Iman M, Davood A. QSAR and QSTR study of pyrimidine derivatives to improve their therapeutic index as antileishmanial agents. Medicinal Chemistry Research. 2013; 22(10): 5029- 5035. doi:10.1007/s00044-013-0477-8 12. Luo QL, Li JY, Liu ZY, Chen LL, Li J, Qian Z, et al. Discovery and structural modification of inhibitors of methionine aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. Journal of medicinal chemistry. 2003; 13 (46): 2631-2640. doi:10.1021/jm0300532 13. Oefner C, Douangamath A, D'Arcy A, Häfeli S, Mareque D, Mac Sweeney A, et al. The 1.15 Å crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors. Journal of molecular biology. 2003; 1(332): 13-21. doi:10.1016/S0022-2836(03)00862-3 14. Hu X, Addlagatta A, Matthews BW, Liu JO. Identification of Pyridinylpyrimidines as Inhibitors of Human Methionine Aminopeptidases. Angew Chem Int Ed Engl. 2006; 23(45): 3772-3775. doi:10.1002/anie.200600757 15. Xu W, Lu JP, Ye QZ. Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases. Journal of medicinal chemistry. 2012; 18 (55): 8021-8027. doi:10.1021/jm3008695 16. Kishor C, Gumpena R, Reddi R, Addlagatta A. Structural studies of Enterococcus faecalis methionine aminopeptidase and design of microbe specific 2,2′-bipyridine based inhibitors. MedChemComm. 2012; 11(3): 1406-1412. doi:10.1039/c2md20096a 17. Cui YM, Huang QQ, Xu J, Chen LL, Li JY, Ye QZ, et al. Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives. Bioorganic & medicinal chemistry letters. 2005; 15(16): 3732-3736. doi:10.1016/j.bmcl.2005.05.055 18. Lowther WT, McMillen DA, Orville AM, Matthews BW. The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the Escherichia coli methionine aminopeptidase. Proceedings of the National Academy of Sciences. 1998; 95(21):12153-12157. doi:10.1073/pnas.95.21.12153 19. Martinez-Lopez Y, Caballero Y, Barigye SJ, Marrero-Ponce Y, Millan-Cabrera R, Madera J, et al. State of the Art Review and Report of New Tool for Drug Discovery. Current topics in medicinal chemistry. 2017; 26(17):2957-2976. doi:10.2174/1568026617666170821123856 20. Nunes RR, Fonseca AL, Pinto AC, Maia EH, Silva AM, Varotti FD, et al. Brazilian malaria molecular targets (BraMMT): selected receptors for virtual high-throughput screening experiments. Memórias do Instituto Oswaldo Cruz. 2019;114. doi:10.1590/0074-02760180465 21. Iman M, Asna Ashari B, Davood A. Docking and QSAR study on Triazole derivatives as more potent and effective antifungal agents. Journal Mil Med. 2015; 17(2): 97-105. 22. Davood A, Shafaroodi H, Amini M, Nematollahi A, Shirazi M, Iman M. Design, synthesis and protection against pentylenetetrazole-induced seizure of N-aryl derivatives of the phthalimide pharmacophore. Medicinal Chemistry. 2012; 8 (5): 953-963. doi:10.2174/157340612802084289 23. Iman M, Davood A, Dehqani G, Lotfinia M, Sardari S, Azerang P, et al. Design, synthesis and evaluation of Antitubercular activity of novel Dihydropyridine containing imidazolyl substituent. Iranian Journal of Pharmaceutical Research. 2015; 14 (4): 1067-1075. 24. Qudjani E, Iman M, Davood A, Ramandi MF, Shafiee A. Design and synthesis of curcumin-like diarylpentanoid analogues as potential anticancer agents. Recent Patents on Anti-Cancer Drug Discovery. 2016; 11 (3): 342-351. doi:10.2174/1574892811666160420141613 25. Iman M, Davood A, Dehqani G, Lotfinia M, Sardari S, Azerang P, et al. Design, synthesis and evaluation of Antitubercular activity of novel Dihydropyridine containing imidazolyl substituent. Iranian Journal of Pharmaceutical Research. 2015; 14 (4): 1067-1075.